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I. Exact Diagonalization

Direct diagonalization of Hamiltonian matrix on finite clusters

ladder 

chain (1D)
x

y

two−dimensionnal (2D)

Goals

• ground state properties
• low-lying excitations
• dynamics, finite T , . . .

Advantages

• almost any system can be treated
• almost any observable can be calculated
• quantum-number resolved quantities
• numerically exact (for finite cluster)

Limitation: exponential in lattice size



Largest sizes reached

• S = 1/2 spin models
square lattice: N = 40 triangular lattice: N = 39, star lattice: N = 42
maximum dimension of basis: 1.5 billion

• t-J models
checkerboard lattice with 2 holes: N = 32
square lattice with 2 holes: N = 32
maximum dimension of basis: 2.8 billion

• Hubbard models
square lattice at half filling: N = 20
quantum dot structure: N = 20
maximum dimension of basis: 3 billion

• Holstein models
chain with N = 14 + phonon pseudo-sites
maximum dimension of basis: 30 billion



I (i) Interacting Quantum Systems

Here: discrete, finite case

• system of N quantum mechanical subsystems, ` = 1, . . . , N
• finite number of basis states per subsystem

|α`〉 , α` = 1, . . . , s`
• more general case: s` →∞ (continuum or thermodynamic limit)

N →∞ (thermodynamic limit)

`→ x (continuous quantum field)

Properties:

• Basis direct product of component basis

|α1, α2, . . . , αN〉 ≡ |α1〉⊗|α2〉⊗ . . .⊗|αN〉
⇒ total number of states:

∏N
`=1 s`

• arbitrary state in this basis

|ψ〉 =
∑

{α`}

ψ(α1, α2, . . . , αN) |α1, α2, . . . , αN〉

• behavior governed by Schrödinger equation

H |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 or H |ψ〉 = E |ψ〉 (time-independent)



Hamiltonians

In general, Hamiltonians can connect arbitrary numbers of subsystems

H =
∑

`

H
(1)
` +

∑

`,m

H
(2)
`m + . . .+

∑

`,m,p

H
(4)
`mnp + . . .

• H(1)
` usually determines |α`〉

• H(2)
`m , sometimes H

(4)
`mnp will be important here

• H(2)
`m often short-ranged

Typical terms:

• tight-binding term:

Htb = −
∑

`,m,σ

t`m c†`,σcm,σ

V(x)

ψ( x)

• localized Wannier orbitals (unfilled d- or f - orbitals in transition metals)
• states |0〉, | ↑〉, | ↓〉, | ↑↓〉 per orbital → 4N degrees of freedom
• overlap between near orbitals – “hopping” tlm short ranged

(n.n., possibly n.n.n.)



• local (Anderson) disorder

HA
` =

∑

σ

λ` n`,↓ , n`,σ ≡ c†`,σc`,σ

• Coulomb interaction between electrons HC
`m =

e2

|r` − rm|
screening leads to
• on-site (Hubbard) interaction

HU
` = U n`,↑n`,↓

• near-neighbor Coulomb interaction

HV
`m = V n` n`+r̂ , (n` ≡

∑

σ n`,σ) etc.
• Spin models
• Si localized quantum mechanical spins (S = 1/2, 1, 3/2, . . .)

states | − S〉 | − S + 1〉 . . . |S〉 ⇒ (2S + 1)N degrees of freedom

• Heisenberg exchange

HHeis
`m = J S` · Sm = Jz Sz`S

z
m +

1
2
Jxy

(

S+
` S
−
m + S−` S

+
m

)

• strong coupling limit of the Hubbard model at n = 1 (S = 1/2)

AF exchange → J = 4t2

U

• variations: Jz 6= Jxy (Ising or XY anisotropy), Hn
` = D(Sz` )2 (single-ion),

Hbq
`m = J2 (S` · Sm)2 (biquadratic)



• t–J model: strong-coupling limit of doped Hubbard

HtJ
`m = P Htb

`m P + J

(

S` · Sm −
1
4
n` nm

)

double occupancy projected out (P) - 3 states/site

• Anderson impurity - hybridized d (or f) orbital with on-site interaction

HAI
` = εdn

d
` + V

(

d†`,σc`,σ + H.c.
)

+ Und`,↓n
d
`,↓

single impurity or lattice (PAM) possible

• Kondo impurity - localized d spin S

HK
` =

JK
2

S` ·
(

c†`,ασα,βc`,β

)

limit of symmetric Anderson impurity at strong U



Lattices

square lattice Kagomé lattice

Described by

• unit cell

• Bravais lattice: translation vectors T1, T2 (2D)

T1

T2



• finite lattices: finite multiples of T1, T2 and boundary conditions
• periodic, antiperiodic
• open
• lattice symmetries:
• translation – multiples of Bravais lattice vector + periodic (AP) BCs
• rotations – e.g., π/2 for a square lattice (group C4v)
• reflection – about symmetry axis

Tilted clusters

40-site cluster, square lattice (a = 1)

T1 = (1, 0) , T2 = (0, 1)

Spanning vectors:

F1 = (6, 2) , F2 = (−2, 6)

In general,

F1 = (n,m) , F2 = (−m,n)
N = n2 +m2

translational symmetry satisfied

⇒ reflection/rotation symmetries become more complicated



I (ii) Representation of Many-Body States

mapping to (binary) integers:

• spin-1/2 Heisenberg:

|↑1↓2 . . . ↑N−1↑N〉 → 1102 . . . 1N−11N
spin flip = bit flip

• Hubbard

|N↑`N
↓
` 〉 → N↑`N

↓
` or |Ne

`S
z
` 〉

with Nσ = {0, 1}
• other models (t–J , S = 1 Heisenberg, . . .) more complicated

Symmetries: given group G with generators {gp}
[H, gp] = 0 → H block diagonal (Hilbert space can be divided)

• Continuous
• conservation of particle number, Sz – U(1) ⇒ permutations of bits
• total spin SU(2) difficult to combine with space group
⇒ spin inversion (Z2) can be used

• Space group
• translation: abelian local states
• point group (reflections and rotations): non-abelian in general

⇒ form symmetrized linear combination of local states



Example

Reduction of Hilbert space for S = 1/2 Heisenberg on
√

40×
√

40 cluster

• full Hilbert space:
• constrain to Sz = 0:
• using spin inversion:
• utilizing all 40 translations:
• using all 4 rotations:

dim= 240 = 1012

dim= 138× 109

dim= 69× 109

dim= 1.7× 109

dim= 430, 909, 650



I (iii) Complete Diagonalization

To solve H |ψ〉 = E |ψ〉 (H real, symmetric)

Method (Numerical Recipes, Ch. 11)

1. Householder transformation - reduction to tridiagonal form T
• ≈ 2n3/3 operations (4n3/3 with eigenvectors)

2. Diagonalization of a tridiagonal matrix
• roots of secular equation: inefficient
• QL (QR) algorithm - factorization T = Q L,
Q orthogonal, L lower triangular
≈ 30n2 operations (≈ 3n3 with eigenvectors)

Useful for:

• Simple problems, testing
• Matrix H dense
• Many eigenstates required

But

• H must be stored
• entire matrix must be diagonalized



I (iv) Iterative Diagonalization

Idea: project H onto a cleverly chosen subspace of dimension M � N
⇒ good convergence of extremal eigenstates

Methods

• Power method |vn〉 = Hn|v0〉
• conceptually simple, but converges poorly
• needs only two vectors, |vn〉 & |vn−1〉
• Lanczos: orthogonal vectors in Krylov subspace (spanned by {|vn〉})
• simple to implement
• memory efficient - only 3 vectors needed at once
• works well for sparse, short-range H

• Davidson: subspace expanded by diagonal approximation to inverse iteration
• higher-order convergence than Lanczos (usually)
• implementation more complicated
• works best for diagonally-dominated H

• Jacobi-Davidson: generalization of Davidson
• nontrivial problem-specific preconditioner (approximation to inverse)
• can be applied to generalized eigenvalue problem

A |x〉 = λ B |x〉 (A, B general, complex matrices)



Lanczos Algorithm

0) choose |u0〉 (random vector, |ψ̃0〉 from last iteration, . . .)

1) form |un+1〉 = H |un〉 − an|un〉 − b2n |un−1〉

where an = 〈un|H|un〉
〈un|un〉 and b2n = 〈un|un〉

〈un−1|un−1〉

2) Is 〈un+1|un+1〉 < ε?
yes: do 4) then stop
no: continue

3) repeat starting with 1) until n = M (maximum dimension)

4) diagonalize 〈ui|H|uj〉 (tridiagonal) using QL algorithm

diagonal elements D = (a0, a1, . . . , an),

off-diagonal elements O = (b1, b2, . . . , bn)
⇒ eigenvalue Ẽ0, eigenvector |ψ̃0〉

5) repeat starting with 0), setting |u0〉 = |ψ̃0〉



Convergence of Lanczos Algorithm

• eigenvalues converge starting with
extremal ones
• excited states can get “stuck” for a

while

at longer times:
• true eigenvalus converged
• spurious or “ghost” eigenvalues

produced
• multiplicity of eigenstates increases



Example: 2D t-J Model

Binding of 2 holes

R: average hole-hole distance
∆B: binding energy

(Poiblanc, Riera, & Dagotto, 1993)

• holes closer than two lattice spacings
• pair binding for J > Jc, but large finite-size effects

⇒ Does binding persist for larger lattices and constant doping (more holes)?



I (v) Dynamics with Exact Diagonalization

Time-dependent correlation functions

C(t) = −i〈ψ0|A(t) A†(0)|ψ0〉

Fourier transform to frequency space (retarded)

C̃(ω + iη) = 〈ψ0|A (ω + iη −H + E0)−1
A† |ψ0〉 (resolvent)

Spectral function

I(ω) = −1
π

lim
η→0+

Im C̃(ω + iη)

Examples from theory and experiment

name notation operators experiment

single-particle spectral weight A(k, ω) A = ck,σ photoemission

structure factor Szz(q, ω) A = Szq neutron scattering
optical conductivity σxx(ω) A = jx optics
4-spin correlation R(ω)

∑

kRk Sk · S−k Raman scattering



Methods

Krylov space method (continued fraction)

restart Lanzcos procedure with

|u0〉 =
1

√

〈ψ0|A A† |ψ0〉
A† |ψ0〉

In this Lanczos basis,

C̃(z = ω + iη + E0) =
〈ψ0|A A† |ψ0〉

z − a1 −
b22

z−a2−
b23

z−a3−...

Interpretation:

• calculation of eigenvector not needed

• consider Lehmann representation of spectral function

I(ω) =
∑

n

|〈ψn|A†|ψ0〉|2 δ(ω − En + E0)

⇒ poles and weights of C̃(z) determine I(ω)
• weight decreases with n → truncate after M steps

• spectrum discrete → finite broadening η



Correction vector method (Soos & Ramasesha, 1984)

Calculate vectors

|φ0〉 = A† |ψ0〉 , |φ1〉 = (ω + iη −H + E0)−1 |φ0〉
directly, then

I(ω) =
1
π

Im 〈φ0|φ1〉

Advantages:

• spectral weight calculated exactly for a given range
• nonlinear spectral functions computed by higher order correction vectors
• can be run in conjunction with Davidson algorithm

Disadvantage: system (H − z)|φ1〉 = |φ0〉 must be solved for each ω desired



Example: Dynamics in 2D t-J Model

Single-particle spectral weight A(k, ω) at k = kF = (π/2, π/2) for one hole

4× 4 lattice (Dagotto, Joynt, Moreo, Bacci, & Gagliano, 1993)

Does a single quasiparticle propagate in an antiferromagnet?

• strongly localized hole with string exitations at J/t = 1.0
• quasiparticle peak remains until J/t = 0.4
• “lump” with pseudogap at J/t = 0.2
• pseudogap due to finite-size effects at J/t = 0 (symmetric in ω)



I (vi) Finite Temperature with Exact Diagonalization

To calculate finite-T properties in orthonormal basis |n〉

〈A〉 =
1
Z

N
∑

n

〈n|Ae−βH|n〉 , Z =
N
∑

n

〈n|e−βH|n〉 ,

Problem: expensive to calculate for all |n〉

Idea: stochastic sampling of Krylov space (Jaklic & Prelovsek, 1994 )

〈A〉 ≈ 1
Z

∑

s

Ns
R

R
∑

r

M
∑

m

e−βε
(r)
m 〈r|Ψ(r)

m 〉〈Ψ(r)
m |A|r〉

where

Z ≈
∑

s

Ns
R

R
∑

r

M
∑

m

e−βε
(r)
m

∣

∣

∣〈r|Ψ(r)
m 〉
∣

∣

∣

2

•
∑

s over symmetry sectors of dimension Ns

•
∑

r average over R random starting vectors |Ψ(r)
0 〉

•
∑

m Lanczos propagation of starting vectors: |Ψ(r)
m 〉 at step m

⇒ useful if convergence good when M � Ns and R� Ns



Properties

• related to high-T expansion – T →∞ limit correct

• high to medium T properties in thermodynamic limit

• low-temperature limit correct (on finite lattice), up to sampling error

reduction of (large) sampling error: (Aichhorn et al., 2003)

start with:

〈A〉 =
1
Z

N
∑

n

〈n|e−βH/2Ae−βH/2|n〉 ,

⇒ twofold insertion of Lanczos basis → smaller fluctuations at low T

• can calculate

• thermodynamic properties: specific heat, entropy, static susceptibility, . . .
• static correlation functions
• dynamics: A(k, ω), Szz(q, ω), σxx(ω), . . .



Example: t-J Model at finite T

Hole concentration ch(= x) vs. chemical potential shift ∆µ = µh − µ0
h

2D t-J model, 16, 18, 20 sites, t/J = 0.3, t = 0.4eV

−0.4 −0.2 0.0 0.2 0.4
∆µ (eV)

0.0

0.1

0.2

0.3

c h

T/t=0.05
0.1
0.2
0.3
0.4
experiment

(Jaklic & Prelovsek, 1998)

• experimental results for LSCO from photoemission shift (Ino et al., 1997)
• holes only when µ < µ0

h ≈ −1.99t as T → 0
• compressibility finite ⇒ no phase separation



Optical conductivity compared with various cuprates at intermediate doping

0.0 0.2 0.4 0.6 0.8 1.0
ω (eV)

0.0

0.2

0.4

0.6

0.8

σ 
ρ 0

T/t=0.15
T/t=0.3
T/t=0.5
T/t=1.0

nh=3/16

J/t=0.3

La1.8Sr0.2CuO4

YBa2Cu3O7

Bi2Sr2CaCu2O8

(Jaklic & Prelovsek, 1998)

• Cuprates measured at T < 200K, ch somewhat uncertain
• high-T falloff slower for materials – transitions to higher excited states?
• experimental curves:
• LCSO, ch ∼ x = 0.2 (Uchida et al., 1991)
• BISCCO, ch ∼ 0.23 (Romero et al., 1992)
• YBCO, ch ∼ 0.23 (Battlogg et al., 1994)



Discussion: Exact Diagonalization

• Method conceptually straightforward, numerically exact

• Iterative diagonalization allows the treatment of surprisingly large matrices

• Efficient implementation using symmetries useful

• System sizes nevertheless strongly restricted

• Extensions to basic method can calculate
• dynamical correlation functions
• finite temperature properties

• Not mentioned here, but also possible:

calculation of full time evolution of quantum state with Lanczos

⇒ Benchmark for other methods, useful when other methods fail



II (i) Anderson and Kondo Problem

Problem: one localized impurity in a noninteracting electron gas

Single Impurity Anderson Model (SIAM)

HAI = εd n
d
` + Und`,↓n

d
`,↓ +

∑

k,σ

(

Vk,d c
†
k,σdk,σ + H.c.

)

+
∑

k,σ

εk c
†
k,σck,σ

• general scattering Vk,d between impurity and band
• Coulomb interaction on d-site only
• usual simplifications:
• isotropic scattering: Vk,d ⇒ Vk,d, ck,σ ⇒ ck,l=m=0,σ (s-wave)
• symmetric: εd = −U/2
• constant or semi-elliptical density of states

Mapping onto semi-infinite chain

H̃AI = εd n
d
` + Und`,↓n

d
`,↓ + V

∑

k,σ

(

f†0,σdσ + H.c.
)

+
∞
∑

n=0,σ

[

εn f
†
n,σfn,σ + λn

(

f†n,σfn+1,σ + H.c.
)]

obtained through Lanczos tridiagonalization of
∑

k,σ εk c
†
k,σck,σ

where V f†0,σ =
∑

k Vkd ck,σ and V 2 =
∑

k |Vkd|2



Kondo model

HK = JK Sd · s0 +
∑

k,σ

εk c
†
k,σck,σ with s0 = f†0,σ~σσµf0,µ , f0,σ =

∑

k ck,σ

• strong-coupling limit (U � V 2) of symmetric, isoptropic HAI

(Schrieffer-Wolff transformation)
• local, isotropic coupling of spin to band

Mapping to a linear chain model via

1. Lanczos tridiagonalization
2. constant density of states ρ0

3. logarithmic discretization of conduction band

H̃K =
1
2

(1 + Λ−1)
∞
∑

n=0

Λ−n/2
(

f†n,σfn+1,σ + H.c.
)

+ 2JK ρ0 f
†
0,σ~σσµf0,µ

where the Lanczos coefficients εn = 0 and λn ≈ 1
2(1 + Λ−1)Λ−n/2, n� 1

⇒ “hopping” falls off exponentially!

Related models

• anisotropic Kondo model Sd · s0 → Szds
z
0 + α

2 (S+
d s
−
0 + S−d s

+
0 )

• Ohmic two-state system
• generalized Anderson impurity model (DMFT)



II (ii) Numerical Renormalization Group for Kondo Problem
(Wilson, 1974)

Idea: Numerically integrate out degrees of freedom → low-energy properties

Kondo problem −→ 1D quantum lattice model (4N degrees of freedom)

• isolate finite system
• diagonalize numerically
• keep m lowest energy eigenstates
• add a site
• iterate

Assumption: low-energy states most important for low-energy behavior of larger
system

⇒ powerful method for impurity problems (Kondo, Anderson, . . .)

Why does it work so well?

• Each system size corresponds to a lower energy scale
• Each RG step can be justified perturbatively (Λ−1 is a small parameter)
• substantial portion (1/4) of Hilbert space is kept at each step



Calculation of observables with the NRG

Effective Hamiltonian for a given size associate with energy scale

H̄N ≡ HN/DN , DN = 1
2(1 + Λ−1) Λ−(N−1)/2 (lowest scale)

• RG flow - fixed point defined by R[H∗] = H∗

numerically: range N1 ≤ N ≤ N2 in which ĒNp ≈ Ēp (independent of N)

⇒ identify fixed points and crossover energy scales

• thermodynamic quantities
effective partition function at scale DN

ZN(T ) ≡ Tr e−HN/kBT =
∑

p

e−E
N
p /kBT

valid at kBT = kBTN ≈ DN

other quantitites can be formed from the partition function

e.g., impurity suceptibility for Anderson model

χimp(T ) =
(gµB)2

kBT

[

1
Z

Tr(Stot
z )2e−H/kBT − 1

Zc
Tr(Stot

z,c)
2e−Hc/kBT

]



• dynamical quantities (T = 0)
e.g., impurity spectral function:

A(ω) = −1
π

ImG(ω + iη) where G(t) = −i〈ψ0|T d(t)d†(0) |ψ0〉

At finite N ,

AN(ω) =
1
ZN

∑

p

∣

∣〈p|d†σ|0〉
∣

∣

2
δ(ω − Ep + E0) +

∣

∣〈0|d†σ|p〉
∣

∣

2
δ(ω + Ep − E0)

AN(ω) ≈ A(ω) when ω ≈ ωN ≡ kBTN
⇒ dynamics can be performed at the current RG energy scale

• energy summation gives sum of δ-functions
• broadening needed to get a continuous spectrum

• dynamical properties at finite-T similar (appropriate T , ω)

⇒ transport properties



Dynamics at finite N (SIAM) (Bulla, 2000)

N = 14

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
ω

0.00

0.10

0.20

N = 16

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
ω

0.00

0.10

0.20

N = 18

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
ω

0.00

0.10

0.20



Physics of the Kondo Problem

Flow of coupling constants

(SIAM, εd = −0.2, U = 0.4, ∆ = 1
2πV

2N(Ef) = 0.015)

0 20 40 60
N

0.0

1.0

2.0

3.0

4.0
E

N
(Q

,S
) *

 Λ
N

/2

Q=0,S=1/2
Q=1,S=0
Q=1,S=1

(Bulla, 2000)

• Crossover to local moment behavior at N ≈ 5 ⇒ unstable fixed point
• Crossover to screening behavior at energy scale kBTK
⇒ stable low-T fixed point



Susceptibility universal on Kondo scale ⇒ universal value at T = 0

(Krishna-murthy, Wilkins,

& Wilson, 1980)

Quasiparticle peak at Fermi energy in SIAM

−0.3 −0.2 −0.1 0.0 0.1 0.2
ω

0.0

10.0

20.0

A
(ω

)

U/∆=8
U/∆=16
U/∆=32

(Bulla, 2000)



Application to other quantum lattice models unsuccessful:

• 1D Hubbard model (Bray & Chui, 1979)

lattice size L = 2, 4, 8, 16
10% error in E0 after 4 steps ⇒ L = 16

• 1D Heisenberg model (Xiang & Gehring, 1992)

S = 1, L = 18 sites, OBCs: 3% error in E0

• 2D Anderson localization (Lee, 1979)

Found a localization transition in 2D

(scaling theory: no transition, 2D critical dimension)

⇒ separation of energy scales not applicable



Single-Particle Problem

Wilson procedure for particle on a tight-binding lattice (Wilson, 1985)

H =









2 −1
−1 2

0 0
−1 0

0 −1
0 0

2 −1
−1 2









−→ − ∂2

∂x2
+ fixed BCs

(equivalent to modes of a string with fixed ends)

Putting two “blocks” together

⇒ treatment of boundaries
critical

Test calculation:

State Exact NRG
E0 2.351× 10−6 1.9207× 10−2

E1 9.403× 10−6 1.9209× 10−2

E2 2.116× 10−5 1.9714× 10−2

10 blockings (2048 sites)
8 states kept



Discussion: Numerical RG

• Iterative diagonalization scheme - effort per step remains constant as system
grows

• Truncation carried out by transforming to the basis of m lowest energy
eigenstates

• Degrees of freedom added by adding site

• NRG works well for impurity problems because of exponential separation of
energy scales on effective chain model

• Thermodynamics, dynamical correlations, and transport properties can be
calculated

• NRG becomes inaccurate quickly for quantum lattice models such as Hubbard
and Heisenberg chains

• Origin of problem can be understood for single particle on a tight-binding
chain – treatment of boundaries as blocks are put together

⇒ Very useful for the right problem, but can fail badly



III (i) Better Methods for the Noninteracting Particle

Combinations of BCs technique (White & Noack, 1992)

fixed free free free free fixed fixed fixed

• Diagonalize HL with different combinations of BCs
• Use orthogonalized set of states as new basis
• Energies accurate to 10 digits (2 states/BC, 10 iterations)

⇒ Not easy to generalize to interacting systems

Superblock technique

H2L

ψ
0

HL HL HLHL

4L

p=4 superblock

Idea: Fluctuations in additional blocks allow general behavior at boundaries

• Diagonalize superblock of p blocks
• Project wavefunctions onto size 2L block, orthogonalize
• Exact as p→∞
⇒ Projection is no longer trivial for interacting systems



Review: entanglement in quantum mechanics

system made up of S = 1
2 spins A, B

| ↑↑〉 ≡ | ↑〉A ⊗ | ↑〉B (or | ↓↓〉, | ↑↓〉, | ↓↑〉)

superposition:

|ψ〉 =
1√
2

(| ↑↑〉+ | ↓↓〉)

Measurements:

↑ (50%)

↓ (50%)
ρ
A

ρ
B

Alice

|ψ>
AB

A

Bob

B ↑ (50%)

↓ (50%)

measurements correlated: A ↑ ⇒ B ↑ with 100% probability

⇒ state (maximally) entangled!

Einstein, Podolsky, Rosen (1935): “spooky action-at-a-distance”
(spukhafte Fernwirkung)

Schrödinger (1935): entanglement essential property of quantum mechanics!



More complete description: density matrices

density matrix describes part of system

ρA = TrB |ψ〉 〈ψ| =

(

1
2 0
0 1

2

)

(similar for ρB)

⇒ mixed state

Schmidt decomposition

|ψ〉AB =
∑

α

√
wα |φα〉A |χα〉B =

1√
2

(| ↑↑〉+ | ↓↓〉)

|φα〉A: eigenstate of ρA, |χα〉B: eigenstate of ρB
wα: common eigenvalues

Schmidt number: number of wα 6= 0

= 1: |ψ〉 = |φ0〉A |χ0〉B e.g., = | ↑↑〉 not entangled

> 1: A and B entangled



Relationship to Quantum Information

relabeling:
| ↓〉 ≡ |0〉, | ↑〉 ≡ |1〉 ⇒ qubit

Is information contained in a pair of qubits?

quantum information content: von Neumann entropy

S(ρ) = −Tr ρ log ρ

examples:

• |ψ〉 = |φ〉|χ〉 : S(ρA) = 0 ⇒ classical

• |ψ〉 = 1√
2

(|1〉|1〉+ |0〉|0〉) : S(ρA) = 1 ⇒ entangled qubits

entanglement: mutual quantum information

classical analog: Shannon entropy – information content in a message

Applications of entanglement

• quantum data compression
• quantum cryptography
• quantum teleportation
• quantum computing



III (ii) Density-Matrix Projection

What can be learned from dividing a many-body system?

| i > | j > | i > | j > 

• For the state |ψ0〉 of the system (or approximation)
• reduced density matrix of subsystem (“system block”)

ρ = Tr|j〉 |ψ0〉 〈ψ0|
trace over states of the “environment block”

Properties:
• eigenstates |φα〉 form a complete basis for system block
• eigenvalues wα
• weight of a state
• entanglement/mutual quantum information

S(ρ) = −Tr|j〉 (ρ log ρ) = −
∑

αwα logwα
• optimal approximation: sum over m eigenstates with the largest wα

|ψ0〉 ≈
m < dim(α)
∑

α

√
wα |φα〉 |χα〉 (Schmidt decomposition)



Density Matrix Renormalization Group (White, 1992)

Goal: ground-state properties of a 1D quantum lattice model

Density-matrix projection

• diagonalization (e.g., Lanczos) of a finite lattice ⇒|ψ0〉
• division of system
• reduction of the system block basis via density matrix ⇒ m states
• Properties:
• variational, ground state properties (numerically) on a finite lattice
• very exact for 1D models with “open” boundary conditions
• energies, local quantities most accurate
• correlation functions (somewhat) less accurate

Buildup of system (RG)

• add one site at a time ⇒ fewest possible degrees of freedom at once
• need to choose environment block

possibilities:
• one or more “exact” sites
• reflection of system block
• stored block from a previous step



III (iv) DMRG Algorithms

2 ways of building up superblock, depending on choice of the environment block

Infinite System Algorithm

• environment block: reflection of the system block
• superblock grows by 2 lattice sites per iteration

Finite System Algorithm

• starting point: infinite system method
• size of superblock stays the same environment block shrinks
• “zipping” back and forth ⇒ iterative convergence
• environment block stored from previous iteration



Infinite System Algorithm in Detail

H H ll

H

R

l +1

1. Form a superblock containing L sites which is small enough to be exactly
diagonalized.

2. Diagonalize the superblock Hamiltonian Hsuper
L numerically, obtaining only

the ground state eigenvalue and eigenvector |ψ〉 using the Lanczos or Davidson
algorithm.

3. Form the reduced density matrix ρii′ for the new system block from |ψ〉 using
ρii′ =

∑

j ψ
∗
ijψi′j. Note that `′ = ` = L/2− 1.

4. Diagonalize ρii′ with a dense matrix diagonalization routine to obtain the m
eigenvectors with the largest eigenvalues.

5. Construct H`+1 and other operators in the new system block and transform
them to the reduced density matrix eigenbasis using H̄`+1 = O†LH`+1OL,

Ā`+1 = O†LA`+1OL, etc., where the columns of OL contain the m highest
eigenvectors of ρii′, and A`+1 is an operator in the system block.

6. Form a superblock of size L+ 2 using H̄`+1, two single sites and H̄R
`+1.

7. Repeat starting with step 2, substituting Hsuper
L+2 for Hsuper

L .



Finite System Algorithm in Detail

H

H
l

H R
l+1

+2

l -1

0. Carry out the infinite system algorithm until the superblock reaches size L,
storing H̄` and the operators needed to connect the blocks at each step.

1. Carry out steps 3-5 of the infinite system algorithm to obtain H̄`+1. Store it.
(Now ` 6= `′.)

2. Form a superblock of size L using H̄`+1, two single sites and H̄R
`′−1. The

superblock configuration shown above where `′ = L− `− 2.

3. Repeat steps 1-2 until ` = L− 3 (i.e. `′ = 1). This is the left to right phase
of the algorithm.

4. Carry out steps 3-5 of the infinite system algorithm, reversing the roles of H̄`

and H̄R
`′ , i.e. switch directions to build up the right block and obtain H̄R

`′+1.
Store it.

5. Form a superblock of size L using H̄`−1, two single sites and H̄R
`′+1.

6. Repeat steps 4-5 until ` = 1. This is the right to left phase of the algorithm.

7. Repeat starting with step 1.



Convergence of the DMRG

Comparison with exact solution (Bethe ansatz):
1D Hubbard model, 128 sites, open BCs

• finite system algorithm,
6 iterations
• m = 50 to 800 states kept
• reflection symmetry at

center used
• CPU time: ca. 6 hours

on a 1.2 MHz Athlon

⇒ energy exact to 10 decimal places!

Applications: spin chains (XY, Heisenberg, biquadratic, S = 1/2, 1, 3/2, 2, . . .),
1D Hubbard-like models (plain, extended, ionic, Peierls-, . . .)



What can be done with the DMRG?

What is it? Approximate diagonalization on a finite lattice

• Variational

• Large systems (up to 1000 sites)

• Accuracy comparable to exact diagonalization (in many cases)

• No problems with frustration or fermions

• What can be calculated?

• Ground-state properties: gaps, correlation functions, susceptibilities
• Dynamics of a quantum system
• Finite temperature (high and low temperature)
• Classical systems at finite temperature
• Time evolution of a quantum system

Limitations

• Convergence depends on details of system

• dimensionality (1D best)
• boundary conditions (open BCs best)
• range of Hamiltonian (short-range best)

• Efficient program can be complicated



Single-Particle Problem Revisited

More DMRG-like algorithm for single-particle problem

Hij = 2 δij − δi,i+1 − δi,i−1

Divide the system into 4 parts:

l l+1 l+2 l+31 ... ... L

Use one basis state per block (m = 1) so that

ψj =















a1Lj j ≤ `
a2 j = `+ 1
a3 j = `+ 2
a4Rj j ≥ `+ 3

Hamiltonian matrix element between ψ and ψ′:

〈ψ|H|ψ′〉 =









a1

a2

a3

a4









T 







H11 T12 0 0
T12 2 −1 0
0 −1 2 T34

0 0 T34 H44

















a′1
a′2
a′3
a′4









where

H11 = 〈L|H|L〉, H44 = 〈R|H|R〉
T12 = 〈L|H|l + 1〉 = −L`, T34 = 〈l + 2|H|R〉 = −R`+3



Algorithm to find the ground state

Given L(`) and R(`+ 3) – left and right bases at step `

• Iteratively improve {L(`)} by getting improved L(`+ 1), given L(`)
and R(`+ 3) (left to right)
• Then improve {R(`)}, given L(`) and R(`+ 3) (right to left)

Basic left to right step

• Diagonalize H (4× 4 matrix) to get ground state (a1, a2, a3, a4)
• Normalize a1 and a2 as a′1 = a1/N , a′2 = a2/N , N =

√

a2
1 + a2

2

• New basis state is then L(`+ 1)′ =









a′1L(`)1
...

a′1L(`)`
a′2









• New Hamiltonian matrix element is

〈L(`+ 1)′|H|L(`+ 1)′〉 = a′1
2〈L(`)|H|L(`)〉+ 2a′2

2 − 2a′1a
′
2L(`)`

If L(`) and R(`+ 3) were pieces of exact ground state, this would be exact
⇒ energy cannot increase.

Since we add degrees of freedom when ` → ` + 1, energy will decrease if state
is not exact ground state.



Initialization (infinite system procedure)

• Start with L = 4 to get L(2)
• Reflect L(2) to get R(5) ⇒ L = 6
• Increase L by 2 until desired size is reached



Implementation in C++

(Uses “MatrixRef” matrix library by S.R.W. and R.M.N.)

C++ can use natural “objects” such as blocks:

(file pbox.h)

class Block
{

public:
Real H11;
Real L_inner;

Block() // Default: construct a one-site block
: H11(2.0), L_inner(1.0) { }

Block Reflect() const { return *this; }
};

• H11 and L inner are real numbers containing H11 (H44) and L` (R`+3) for
left (right) blocks

• Block() (the default constructor) defines that
Block S;
will create a block consisting of a single site

• Reflect() interchanges left and right blocks, i.e.
Block R = L.Reflect(); (actually just returns itself)



Now define the collection of blocks making up the system:

class WaveFunction;

class System
{

public:
const Block& b1;
const Block& b2;
const Block& b3;
const Block& b4;

System(const Block& bb1,const Block&bb2,
const Block&bb3, const Block&bb4)

: b1(bb1), b2(bb2), b3(bb3), b4(bb4) { }

Real GetGroundState(WaveFunction& p);
};

• b1, b2, b3, b4 are references to four blocks
• The statement

System S(leftblock,siteblock,siteblock,rightblock);

creates a system of four blocks
• GetGroundState returns the ground state energy and ground state

wavefunction p (will be defined later, in “pbox.cc”)



Still need to define a WaveFunction:

class WaveFunction
{

public:
Vector v;
WaveFunction() : v(4) {}
};

just a vector of length 4, Vector is from MatrixRef library



Definition of GetGroundState: (file pbox.cc)

Real System::GetGroundState(WaveFunction& p)
{
Matrix H(4,4), evecs(4,4);
Vector evals(4);
H = 0.0;
H(1,1) = b1.H11;
H(2,2) = b2.H11;
H(3,3) = b3.H11;
H(4,4) = b4.H11;
H(1,2) = H(2,1) = -b1.L_inner;
H(2,3) = H(3,2) = -1.0;
H(3,4) = H(4,3) = -b4.L_inner;
EigenValues(H,evals,evecs);
p.v = evecs.Column(1);
if(p.v.sumels() < 0.0) p.v *= -1.0;
Real energy = evals(1);
return energy;
}

• Forms the 4× 4 matrix H as defined previously
• Diagonalizes H using EigenValues from MatrixRef
• Puts lowest eigenvector in p
• Return value is lowest eigenvalue



The density matrix for the noninteracting system involves just a1 and a2

(a4 and a3 for right block):

enum LR {Left, Right};
class DensityMatrix

{
public:

Real a,b;
DensityMatrix(const WaveFunction& psi,LR lr) {

if(lr == Left)
{ a = psi.v(1); b = psi.v(2); }

else
{ a = psi.v(4); b = psi.v(3); }

}
Vector NewBasis() {

Vector res(2);
Real norm = sqrt(a*a+b*b);
res(1) = a / norm;
res(2) = b / norm;
return res;
}

};

• An enum takes on a finite set of values, LR: left/right flag
• NewBasis() defines the new basis by normalizing a, b



This new basis can be used to form a new (left) block:

Block NewLeft(const Block& b1, const Block& b2, const Vector& bas)
{
Block res;
res.H11 = bas(1) * bas(1) * b1.H11 + 2 * bas(2) * bas(2)

- 2 * bas(1) * bas(2) * b1.L_inner;
res.L_inner = bas(2);
return res;
}

There is a similar routine NewRight for right blocks



We are now ready to define the main program: (file dmrgpb.cc)

First read in length, # of sweeps, and initialize array of blocks:

int main()
{
Block siteblock;
cerr << "Input length, number of iterations: ";
int i, length, nsweeps;
cin >> length >> nsweeps;
cout << "length, nsweeps = " << length SP nsweeps << endl;
cout << "Exact energy = " << exacten(length) << endl;
exlen = length;
Array1<Block> allblocks(length);
WaveFunction psi;
Real energy;

• cout, cerr statements are C++ “print”, cin reads in variables, SP is macro
printing one space
• Array1<Block> defines 1D array of Blocks



Next, do “warmup” sweep, building from 4 sites to full size:

// Warmup sweep
allblocks[1] = siteblock;
for(i = 1; i < length/2; i++)

{
Block rightblock = allblocks(i).Reflect();

System S(allblocks(i),siteblock,siteblock,rightblock);

energy = S.GetGroundState(psi);
cout << i+1 SP psi.v(2) SP energy SP 0 << endl;

DensityMatrix rho(psi,Left);
Vector basis = rho.NewBasis();

allblocks[i+1] = NewLeft(allblocks(i),siteblock,basis);
}

• Print step #, g.s. energy, wave function at ` (= i+ 1),
iteration # (= 0 for warmup) at each step



Now do “finite system” iterations:

// Finite System sweeps
for(int swp = 1; swp <= nsweeps; swp++)

{
// We assume reflection symmetry:

allblocks[length/2 + 2] = allblocks(length/2 - 1).Reflect();
cout << endl;

// Right to left
for(i = length/2+2; i > 3; i--)

{
System S(allblocks(i-3),siteblock,siteblock,allblocks(i));
energy = S.GetGroundState(psi);
cout << i-1 SP psi.v(3) SP energy SP swp - 0.5 << endl;

DensityMatrix rho(psi,Right);
Vector basis = rho.NewBasis();

allblocks[i-1] = NewRight(siteblock,allblocks(i),basis);
}

• Start at symmetric configuration, use reflection symmetry



left to right half sweep analogous

// Left to right
cout << endl << 1 SP psi.v(1) SP energy SP swp << endl;
for(i = 1; i < length/2-1; i++)

{
System S(allblocks(i),siteblock,siteblock,allblocks(i+3));
energy = S.GetGroundState(psi);
cout << i+1 SP psi.v(2) SP energy SP swp << endl;

DensityMatrix rho(psi,Left);
Vector basis = rho.NewBasis();

allblocks[i+1] = NewLeft(allblocks(i),siteblock,basis);
}

}
return 0;
}



Behavior

L = 100, 6 finite-system sweeps

Ground-state energy:

0 10 20 30 40 50
l

0.000

0.002

0.004

0.006

0.008

0.010

E L=100

Warmup

Sweep 1

Wavefunction:

0 10 20 30 40 50
l

0.00

0.05

0.10

0.15

ψ

1

2

3

4
5,6

Exact

⇒ near machine accuracy by diagonalizing only 4× 4 matrix



IV (i) Programming Details

Concrete example: nearest-neighbor Heisenberg exchange

S` · S`+1 = Sz`S
z
`+1 +

1
2
(

S+
` S
−
`+1 + S−` S

+
`+1

)

• Putting 2 blocks together

B1 B 2

l l+1

| j > | i > 

[H12]ii′;jj′ = [H1]ii′ δjj′ + δii′ [H2]jj′ + [Sz` ]ii′
[

Sz`+1

]

jj′

+
1
2

(

[

S+
`

]

ii′

[

S−`+1

]

jj′
+
[

S−`
]

ii′

[

S+
`+1

]

jj′

)

• Transforming operators:

Transformation matrix Oij;α composed of m basis vectors uαij
with α = 1, . . . ,m (usually density matrix eigenvectors)

Operator Aij;i′j′ transformed via

Aαα′ =
∑

i,j,i′,j′

Oij;αAij;i′j′Oi′j′;α′

Dimension of A: (m1m2)× (m1m2) → m×m

Typically: B1 left or right block, B2: added site



Efficiency

• Efficient multiplication of Hsuper|ψ〉 (needed for Lanczos ED)

• could construct (sparse) matrix for Hsuper ⇒ inefficent

• instead generate terms from block operators

H for two block system can be written

[H]ij;i′j′ =
∑

ν

Aνii′B
ν
jj′

(ν sum over all combinations of block operators in H)

Hψ becomes
∑

i′j′

[H]ij;i′j′ ψ
ν
i′j′ =

∑

ν

∑

i′

Aνii′
∑

j′

Bνjj′ψi′j′.

Do j′ sum then i′ as sequence of 2 matrix–matrix products

⇒ Reduces CPU as well as memory for most systems

• Computational cost: CPU ∼ Lm3 Memory ∼ m2



Efficiency (2)

• Using quantum numbers

• Abelian quantum numbers like Sz and Nferm good in any subsystem
⇒ any basis can be partitioned by quantum number
⇒ all operators consist of rectangular blocks that map between definite
quantum numbers

• Can store operators as collections of (dense) matrices, lists of quantum
number pairs ⇒ C++ convenient

• Above operations then have loops over quantum numbers

• Nonabelian quantum numbers (e.g., S2) also possible, but more complicated

• Writing to disk

Information not used in current step can be written to disk
e.g., previously generated blocks in finite size algorithm



IV (ii) Measurements

• given state ψij on two-block system

• single-site expectation value 〈ψ|Sz` |ψ〉
〈ψ|Sz` |ψ〉 =

∑

i,i′,j

ψ∗ij [Sz` ]ii′ ψi′j

• correlation functions such as 〈ψ|Sz`Szm|ψ〉
• ` and m on different blocks:

〈ψ|Sz`Szm|ψ〉 =
∑

i,i′,j,j′

ψ∗ij [Sz` ]ii′[Szm]jj′ ψi′j′

• ` and m on the same block:
Incorrect for approximate ψij:

〈ψ|Sz`Szm|ψ〉 ≈
∑

i,i′,i′′,j

ψ∗ij [Sz` ]ii′[Szm]i′i′′ ψi′′j

Reason: sum over i′ should run over complete set of states, but it doesn’t
Correct:

〈ψ|Sz`Szm|ψ〉 =
∑

i,i′,j

ψ∗ij [Sz`S
z
m]ii′ ψi′j

General Rule: Compound operators internal to a block must be accumulated
as the calculation proceeds

Almost all equal–time correlation functions can be generated like this



IV (iii) Wavefunction Transformations

HsuperψkT for Lanczos or Davidson costly (e.g., 40-100 steps)

Can be reduced if ψ0
T is a good guess for ψ0

Good Guess: Use ψ0 obtained from previous finite system step

⇒ must transform ψ0 obtained from step ` to `+ 1 basis

l l+1 l+2 l+31 ... ... L

Basis: |α`s`+1s`+2β`+3〉 = |α`〉 ⊗ |s`+1〉 ⊗ |s`+2〉 ⊗ |β`+3〉
Transform to: |α`+1s`+2s`+3β`+4〉

Transformation of left basis:

|α`+1〉 =
∑

s`+1,α`

L`+1[s`+1]α`+1,α`|α`〉 ⊗ |s`+1〉.

where Ll+1[sl+1]αl+1,α` = u
αl+1
sl+1α` (uαij new basis vectors)

Similarly for right basis

|β`+3〉 =
∑

s`+3,βl+4

R`+3[s`+3]β`+3,β`+4
|s`+3〉 ⊗ |β`+4〉

Superblock wavefunction:

|ψ〉 =
∑

α`s`+1s`+2β`+3

ψ(α`s`+1s`+2β`+3)|α`s`+1s`+2β`+3〉



Since there is a truncation, must approximate
∑

α`+1

|α`+1〉〈α`+1| ≈ 1

New wavefunction:
ψ(α`+1s`+2s`+3β`+4) ≈

∑

α`s`+1β`+3

L`+1[s`+1]α`+1,α`ψ(α`s`+1s`+2β`+3)R`+3[s`+3]β`+3,β`+4

Perform in two steps:
1. intermediate result:

ψ(α`+1s`+2β`+3) =
∑

α`s`+1

L`+1[s`+1]α`+1,α`ψ(α`s`+1s`+2β`+3)

2. then form

ψ(α`+1s`+2s`+3β`+4) =
∑

β`+3

ψ(α`+1s`+2β`+3)R`+3[s`+3]β`+3,β`+4

• Analogous transformation is used in right to left steps
• Transformation relatively inexpensive in CPU and memory
• Since ψ0

T is physically close to ψ0, Davidson convergence criterium can be
relaxed without converging to wrong state
• All transformations can be stored on disk
⇒ arbitrary operators can be reconstructed after final ψ0 is obtained, at end

⇒ Number of HψkT steps can be greatly reduced



Application: Vanotubes

(Luscher, Noack, Misguich, Kotov, Mila, cond-mat/0405131)

Na2V3O7

V4+: S = 1
2

spin tubes
with J � J ′

J

J’

J’’

J

J’

effective 3-chain model

Ring with odd number of S = 1
2 spins: 4-fold degenerate

Heff = K

N−1
∑

r=1

Sr · Sr+1

(

1 + α
(

τ+
r τ
−
r+1 + τ−r τ

+
r+1

))

Sr: spin, τr chirality on a ring: S = 1
2 pseudospin

strong ring coupling: α ≥ 4 (3 legs, J ′′ = 0)

Bosonization (Schulz 1996), DMRG (Kawano & Takahashi, 1997): spin gap

Experiment (susceptibility, NMR): no spin gap (Gavilano et al., 2003)

⇒ effect of frustration? α� 4



spin and chirality gaps

in [Sz, τz] sectors

⇒ chirality excitation [0,1]
lowest for α < 1

⇒ gaps vanish as α→ 0

α = 0.1
character of the states:

〈ψn|τ+
i τ
−
i+1 + τ−i τ

+
i+1|ψn〉

〈ψn|Si · Si+1|ψn〉

[0,0]: dimerized

[0,1]: bound soliton pair

[1,0]: free solitons



Application: frustrated Hubbard chain

t-t′-U Hubbard chain: -t

-t’

H = −
∑

i,σ

(t c†iσci+1σ + t′ c†iσci+2σ + h.c.) + U
∑

i

ni↑ni↓

Dispersion: ε(k) = −2t cos k − 2t′ cos 2k (t = 1)

Ground–state phase diagram, n = 1:
(Daul and Noack, 1999)

Behavior as a function of U :
• t′ < 0.5: 1D Hubbard, Uc = 0

∆s = 0, ∆c > 0
• t′ > 0.5: Mott–Hubbard transition at Uc > 0

∆s > 0, ∆c = 0 → ∆c > 0

0.0 0.5 1.0 1.5
t’/t

0

5

10

15

20

25

U
dimerized insulatorcritical

insulator

metallic



Quantum Critical Behavior (Aebischer, Baeriswyl, & Noack, 2001)

Metal-Insulator transition as a function of U

Electric susceptibility:

χ =
∂〈P〉
∂E

∣

∣

∣

∣

E=0

= −1
L

∂2E0(E)
∂E2

∣

∣

∣

∣

E=0

≈ 1
LE

∑

i

xi 〈ni〉

Finite-size scaling:

10−2 10−1

1/L

10−1

101

103

χ 
U=1
U=2.5
U=4
U=5.5
U=7

metal

χ ∼ L2

critical

insulator:

χ→ const.

Extrapolated value:
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U

0
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 χ∞

t’=0
t’=0.6
t’=0.7
t’=0.8
t’=0.9
t’=1

Form: χ∞ ∝ exp
(

4π
U − Uc

)



Scaling Analysis

t’=0 t’=0.7

101 103

L/ξ∞

10−7

10−5

10−3

χ/L2

U=2
U=3
U=4
U=5
U=6
U=7

101 103

U=4.5
U=5.5
U=6.5
U=7.5
U=8.5
U=9.5

finite-size scaling:
χ

L2
= C(t′)Φ(L/ξ∞)

(Privman & M.E. Fisher, 1984)

0.01 0.1 1ξ∞

0.01

0.1

1

10

χ∞

t’=0
t’=0.7
t’=0.8

⇒ χ∞ ∝ ξ2
∞

hyperscaling: χ∞ ∼ ξ2+z−d
∞

(Kim & Weichman, 1991)

Further work: doping (n < 1) ⇒ itinerant ferromagnetism at large U/t!



IV (iv) Extensions – 2D and Fermion Systems

(Noack, White, Scalapino, 1994)

system block environment block

• 1D algorithm “folded” into 2D
• finite system algorithm necessary

• convergence depends strongly on width of system
⇒ exponential in width for spinless fermions (Liang & Pang 1994)

Applications:

• Heisenberg, Hubbard and t–J–ladders; 2D t–J–model
SrCu2O3, Sr2Cu3O5, Sr14−xCaxCu24O41−δ
NaV2O5, CaV2O5, high–Tc superconductors
• Kondo lattice model, periodic Anderson model

heavy fermion systems (CeAl3, UPt3)
• Quantum Hall systems (Shibata & Yoshioka, 2001)



Spin Chains and Ladders (White, Noack & Scalapino, 1994)

Heisenberg model on nc = 1, 2, 3, 4 chains

H = J‖
∑

j=i+x̂

Sj · Si + J⊥
∑

j=i+ŷ

Sj · Si

cn = 3
nc = 2

Spin-spin correlation functions

power law – critical exponentially decaying – disordered



Spin excitations

∆ = E0(S = 1, L)− E0(S = 0, L)

• ∆ = 0, nc odd
• ∆ > 0, nc even
• J⊥ � J‖ limit:
nc = 2: rung S = 0 singlet
nc = 3: rung effective spin-1/2

⇒ Quantum effect – Haldane gap

Spin ladder materials

SrCu2 O3 OSr2Cu3 5

spin gap no spin gap



2D t–J Model (White & Scalapino, 1998)

Stripe formation - high-Tc?

• 16× 8 lattice (cylinder)
• doping x = 1/8
• circles: charge density

arrows: spin density
• domain walls: π-phase, 1/2-

filled, bond centered
• site-centered, diagonal walls also

possible

• 8× 8 cylinder, 8 holes
• blue circles: most probable hole

position
• lines: AF exchange strength

General conclusions:
• stripes w/o long-range Coulomb
• competition with dx2−y2 pairing
• stripes “evaporate” with t′

(sign → electron-doping)

0.35

0.25

-0.0
-0.7



Hubbard Model in Momentum Space

(Xiang, 1996; Nishino, Jeckelmann, Gebhard & Noack, 2002)

H =
∑

kσ

εk c
†
kσckσ +

U

N

∑

pkq

c†p−q↑c
†
k+q↓ck↓cp↑

Method: choose a 1D path in k-space, similar to 2D algorithm in real space

• advantages
• convergence only weakly dependent on dimensionality (enters only in εk)
• method exact in weak coupling
• momentum is a conserved quantity

• disadvantages: interaction non-local
• convergence poor at large U/t
• bookkeeping for the interaction terms

⇒ more accurate than real-space DMRG for sufficiently small U

2D square lattice, periodic BCs: U/t ≈ 8

• current research: more general models
∑

pkq

Vσσ′(q) c
†
p−qσc

†
k+qσ′ckσ′cpσ



V (i) Classical Transfer Matrices

1D Quantum Systems closely related to 2D classical systems

Row Transfer Matrix (Nishino, 1995)

Ising model on a cylinder (periodic in `)

N

T(N) Row transfer matrix T (N)(s′|s)
has dimension 2N

⇒ Treat T (N) using DMRG

Can divide into two parts:

T (N)(s′|s) = TL(s′L|sL)W (s′Ms
′
M+1|sMsM+1)TR(s′R|sR)



Partition function:
Z = Trρ = Tr(T (N))` =

∑

α

λ`α

Z

L R

ρ

ρ ρ

For ` >> N , only largest eigenvalue λ`1 is important ⇒ Use DMRG to obtain λ`1
Can define reduced transfer matrices ρL, ρR

Both infinite and finite system algorithms can be used

Example: (Nishino, 1995)

Specific heat for the 2D Ising model
-9

-8

-7

-6

-5

-3

4321
0

1

2

3

T/J

Cv
10

10

10

10

10

10

Errors



Corner Transfer Matrix: (Nishino and Okunishi, 1996)

Can also treat Corner Transfer Matrix (Baxter, 1968)

s

ss

N1

'

n e w

s'

2 N+1

1
2

N
N+1

n e w
' ' '

'

WT

T

C(N)

Variational partition function fourth power of C.T.M.

Z(2N−1) = Trρc ≈ Tr
(

C̃(N)
c

)4

=
m
∑

ν=1

α4
ν

s

s'' '

s''

s'

s'' ' '

Baxter treated N →∞ limit variationally

⇒ Equivalent to infinite system algorithm (Okunishi, 1996)

However, C̃
(N)
c need not be explicitly diagonalized!



V (ii) Finite Temperature

Simplest idea: Use Boltmann weight e−βEα to weight target states |ψα〉 in
mixed density matrix:

ρii′ =
∑

α

e−βEα
∑

j

ψαijψ
α ∗
i′j

Refinement: (Moukouri and Caron, 1996)

Target M ∼ 10 – 30 states with weight 1/M , project to smaller Hilbert space
by forming

HB HB

⇒ Fully diagonalize HBB, calculate Boltzmann sum

〈A〉 =
∑

γ

e−βEγ〈ψγBB|A|ψ
γ
BB〉

Idea: Basis of H̄B good description of all states

Advantages
• Straightforward extension of

original DMRG
• Most accurate at low T

(on finite system)

Disadvantages
• Finite–size effects (largest

at small T )
• Not clear whether high–T limit

converges



Transfer Matrix DMRG (TMRG) (Bursill et al., 1996)
(Wang and Xiang, 1997)

Idea: Treat quantum system as 1+1 dimensional classical system using Trotter–
Suzuki (checkerboard) decomposition

Z = Tr e−βH = Tr(e−∆τHodde−∆τHeven)M/2 +O(∆τ2)
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x

τ

M

L

Transfer Matrix in space direction:

Z∞M = lim
L→∞

Tr (T1T2)L/2
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Obtain partition function for infinite system at finite T



Free energy related to largest eigenvalue of transfer matrix

F = − lim
∆τ→0

lnλmax

2β
⇒ Use DMRG to obtain λmax

Advantages

• In thermodynamic limit – calculates properties of infinite system
• Exact at high T
• Can calculate thermodynamic properties easily
• τ–dependence available for local dynamics
• Must analytically continue iωm −→ ω + iδ

(Maximum Entropy)
• Spatial (or k) dependence more difficult

Disadvantages

• Technical difficulties – (T1T2), ρ not symmetric in general
• Must extrapolate to ∆τ → 0
• Lower temperature more difficult – “size” ⇐⇒ T
• Longer distance correlation functions more difficult



Example (Wang and Xiang, 1997)

0.0 0.4 0.8 1.2 1.6 2.0
T

0.08

0.12
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0.36

χ

Wang et al Fig. 3

0.00 0.05 0.10
0.106

0.110

0.114

∆ = 0

∆ = 1

∆ = 1

Spin Susceptibility for the spin–1/2 XY (∆ = 0) and Heisenberg chains



1D Kondo Lattice Model (Shibata & Tsunetsugu, 1999)

Hamiltonian

H = −t
∑

i,σ

(

c†i,σci+1,σ + h.c.
)

+
J

2

∑

i

Si ·
(

c†i,ασα,βci,β

)
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J

• Single 1D conduction band

• Localized spin-1/2 impurity at each site

• Half-filling (〈n〉 = 1): Kondo insulator:
localized singlets ∆c > ∆s > 0
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• doping (〈n〉 = 1− δ): crossover to metallic behavior (RKKY Luttinger liquid)



Spin susceptibility Charge susceptibility
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• high T: χs = χPauli + χCurie

• low T, δ = 0: spin gap
• low T, δ > 0: crossover to metal

• high T: free electron behavior
• low T, δ = 0: charge gap
• low T, δ = 0: crossover to metal



V (iii) Dynamics of a Quantum System

dynamical correlation function

G(k, ω) = 〈ψ0|A†k(ω + iη −H)−1Ak|ψ0〉

additional density-matrix eigenstates must be “targetted”:

• Lanczos vector method (Hallberg, 1995)
target vectors: Krylov basis

|ψ0〉, Ak|ψ0〉, HAk|ψ0〉, H2Ak|ψ0〉, ...

• correction vector method: (White & Kühner, 1999)
target vectors:

|ψ0〉, Ak|ψ0〉, (ω + iη −H)−1Ak|ψ0〉
⇒ more accurate, but more costly: different run for each ω

• minimization method (Jeckelmann, 2002)

correction vector minimizes functional

WA,η(ω, ψ) = 〈ψ|(E0 + ω −H)2 + η2)|ψ〉 + η〈A|ψ〉 + η〈ψ|A〉
to get spectral weight

WAk,η(ω, ψmin) = −πη ImG(k, ω)
⇒ mimimization more stable and efficient than matrix inversion



Example: Single-Particle Spectral Weight for Hubbard Chain

(Benthien, Gebhard, & Jeckelmann, 2004)

1D Hubbard model (open BCs)

H = −t
L−1
∑

`=1,σ

(

c†`,σc`+1,σ + c†`+1,σc`,σ

)

+ U

L
∑

`=1

n`,↑n`,↓

Single-particle spectral weight for holes (photoemission)

A(k, ω) =
1
π

Im 〈ψ0| c†k,σ
1

H + ω − E0 + iη
ck,σ |ψ0〉

where ck,σ = 1√
L

∑

` e
ik` c`,σ (assumes periodic BCs)

Problem: open BCs

Solution: use particle-in-a-box states

ck,σ =
√

2
L+1

∑

` sin(k`) c`,σ

⇒ What does A(k, ω) look like in a Luttinger liquid?

(Spin-charge separation, no fermionic quasiparticle, . . .)



Comparison with Bethe Ansatz

Bethe Ansatz: dispersion of specific excitations (no spectral weight)

n = Ne/L = 0.6, U/t = 4.9, L = 90

-1 -3kF -2kF -kF 0 kF 2kF 3kF 1

k/π

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ω
/t

lines: Bethe Ansatz

2 spinon band

◦ � holon band

+ lowest 4kF charge excitation

4 lowest 4kF -singlet charge
excitation + one spinon

⇒ excellent agreement with Bethe Ansatz dispersion



Comparison with ARPES on TTF-TCNQ

ARPES (Sing et al., 2003)

DDMRG



V (iv) Quantum Chemistry

(White & Martin, 1999)

H =
∑

i,j,σ

tijc
†
iσcjσ +

1
2

∑

i,j,k,l

Gijkl
∑

σ,σ′

c†iσc
†
jσ′ckσ′clσ.

• c†iσ creates electron in molecular orbital i (N orbitals)
• tij single-electron integral of molecular orbitals i and j
• Gijkl two-electron integral (Coulomb repulsion)

⇒ exact diagonalization: “full CI”

• Method: similar to momentum-space, 2D methods

• Computational cost: (N4m2 +N3m3)

• Applications
• H2O (White & Martin, 1998)
• CH4, HHeH (Daul, Ciofini, Daul, & White, 2000)
• Be2, N2, HF (Mitrushenkov et al., 2001)
• CH2, F2, LiF (Legeza, Röder, & Hess, 2002; 2003)

ionic-neutral crossing in LiF: potential to 10−6, dipole moment to 10−5

• Ne, H2O, N2, C2H4, H2-chains (Chan & Head-Gordon, 2002)

⇒ energies compare well to full CI (up to 6 digits of accuracy)



Site Ordering Problem

Which orbitals should be placed near one another?

• single-site Density Matrix ρp (Legeza & Solyom, . . .)
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⇒ S(ρp): influence of site p

site entropy S(ρp)

block entropy S(ρA)
H2O molecule

• two-site density matrix ρp,q (Rissler, White & RMN, . . .)
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⇒ effective interaction between p and q

Fluorine

18 orbitals

m = 200



V (v) Time Evolution

Time evolution of a state in quantum mechanics

|ψ(t)〉 = e−iHt |ψ(0)〉

typically: H = H0 +H1 Θ(t) , |ψ(0)〉 = |ψ0〉 or A† |ψ0〉

DMRG approaches:

• Runge-Kutta integration of |ψ0〉DMRG (Cazallila & Marston, 2002)
⇒ only good for small times t

• division of e−iHt into 2-site terms
(White & Feiguin, 2004; Daley, et al., 2004)

Trotter-Suzuki decomposition, 2-site parts exactly applied ⇒ quantum gates

• expansion of e−iHt in Krylov basis (Schmitteckert, cond-mat/0403759)
(Manmana, Muramatsu & Noack, . . .)

multi-target method – optimal targetting under development

Applications: tunnel current between Luttinger liquids,
transport current in a quantum dot
Bose-Hubbard model: Bose-Einstein condensation, atom traps



V (vi) Matrix Product States

DMRG changes the state of the system block in 2 steps:

1. blocking (add a site to a block)

|α〉` ⊗ |s`〉 → |β′`+1〉
2. truncation (in density matrix eigenbasis)

|β`+1〉 = uββ′|β
′
`+1〉

Both steps can be combined (as in wavefunction transformations)

|β`+1〉 =
∑

s`,α

Asβα|α`〉 ⊗ |s`〉

Asβα is a matrix which maps from α` to β`+1

The DMRG wavefunction can be written as a sum of such products

(Ostlund & Rommer, 1995)

|ψMPS〉 =
∑

{s`}

Tr { As1 As2 As3 . . . AsL} |s1, s2, . . . , sL〉

The As` are m×m matrices, except for A1 & AL which are m-element vectors

This is a special case of a matrix product state

The DMRG is a variational calculation in the space of such states



Features

• Any state can be described as a MPS (with dimension of As` large enough)

• Some states are very compactly described:
• Neél state | ↑↓↑↓↑ . . .〉
• Bell state | ↑↑↑ . . .〉 ± | ↓↓↓ . . .〉
• AKLT state: product of singlets to describe spin-1 chain
⇒ 2× 2 matrices

• Matrix product states can be variationally optimized using different methods
• power method Hn|ψMPS〉
• imaginary time evolution eΘH|ψMPS〉
• Lanczos
• DMRG – very efficient, but complicated

• an arbitrary operator X can be evaluated directly in terms of matrix products

⇒ Calculations with matrix product states generalize DMRG

Are other MPS’s better than the DMRG state for particular problems?

Answer: yes (almost certainly)



Better Matrix Product-like States

Periodic boundary conditions (Verstraete, Porras & Cirac, c-m/0404706)

DMRG

New Method

Results: L = 28 Heisenberg chain



Questions:

• computational cost - matrices no longer sparse
• optimal minimization algorithms?

Application to other systems

• Finite temperature or dissipation

(Verstraete, Garćıa-Ripoll & Cirac, cond-mat/0406426)

• 2D systems

(Verstraete, & Cirac, cond-mat/0407066)

Entanglement in all 4 directions ⇒ Tensor product states needed!



DMRG and Quantum Information

Application of Quantum Information in the DMRG

• entanglement (von Neumann) entropy SA = −Tr ρA ln ρA = SB

Error in E0

vs.
Change in ρA after truncation

1D Hubbard model, L = 80
(Legeza & Solyom, 2004)

⇒ How does ρA depend on characteristics of system?

Applications of the DMRG in Quantum Information Theory

• decoherence
⇒ DMRG simulation of entanglement with environment

• foundations of quantum information theory
example: bounds on information content of a noisy chanel



Discussion: DMRG

• DMRG is now a “standard method” for 1D+ spin and fermion systems

• Basic algorithm can still be improved, for example through better use of
symmetries (S2, lattice symmetries, ...)

• Biggest challenge: more efficient extension to 2D+ or 3D+ (classical systems)
lattices

• Currently under development:

• more general models in momentum space
• quantum chemistry: more realistic systems
• dynamics of quantum systems: efficiency can be improved, many possibilities

for applications
• transfer matrices: improved dynamics, more systems
• non-equilibrium systems: new field!

• Exciting new ideas (from Quantum Information Theory)

• Matrix and tensor product states ⇒ generalizations of DMRG

Prospects for
• periodic boundary conditions
• 2D systems
• finite temperature, dissipative systems


