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I. Exact Diagonalization

Direct diagonalization of Hamiltonian matrix on finite clusters

ladder 

chain (1D)
x

y

two−dimensionnal (2D)

Goals

• ground state properties
• low-lying excitations
• dynamics, finite T , . . .

Advantages

• almost any system can be treated
• almost any observable can be calculated
• quantum-number resolved quantities
• numerically exact (for finite cluster)

Limitation: exponential in lattice size



Largest sizes reached

• S = 1/2 spin models
square lattice: N = 40 triangular lattice: N = 39, star lattice: N = 42
maximum dimension of basis: 1.5 billion

• t-J models
checkerboard lattice with 2 holes: N = 32
square lattice with 2 holes: N = 32
maximum dimension of basis: 2.8 billion

• Hubbard models
square lattice at half filling: N = 20
quantum dot structure: N = 20
maximum dimension of basis: 3 billion

• Holstein models
chain with N = 14 + phonon pseudo-sites
maximum dimension of basis: 30 billion



I (i) Interacting Quantum Systems

Here: discrete, finite case

• system of N quantum mechanical subsystems, ` = 1, . . . , N
• finite number of basis states per subsystem

|α`〉 , α` = 1, . . . , s`
• more general case: s` →∞ (continuum or thermodynamic limit)

N →∞ (thermodynamic limit)

`→ x (continuous quantum field)

Properties:

• Basis direct product of component basis

|α1, α2, . . . , αN〉 ≡ |α1〉⊗|α2〉⊗ . . .⊗|αN〉
⇒ total number of states:

∏N
`=1 s`

• arbitrary state in this basis

|ψ〉 =
∑

{α`}

ψ(α1, α2, . . . , αN) |α1, α2, . . . , αN〉

• behavior governed by Schrödinger equation

H |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 or H |ψ〉 = E |ψ〉 (time-independent)



Hamiltonians

In general, Hamiltonians can connect arbitrary numbers of subsystems

H =
∑

`

H
(1)
` +

∑

`,m

H
(2)
`m + . . .+

∑

`,m,p

H
(4)
`mnp + . . .

• H(1)
` usually determines |α`〉

• H(2)
`m , sometimes H

(4)
`mnp will be important here

• H(2)
`m often short-ranged

Typical terms:

• tight-binding term:

Htb = −
∑

`,m,σ

t`m c†`,σcm,σ

V(x)

ψ( x)

• localized Wannier orbitals (unfilled d- or f - orbitals in transition metals)
• states |0〉, | ↑〉, | ↓〉, | ↑↓〉 per orbital → 4N degrees of freedom
• overlap between near orbitals – “hopping” tlm short ranged

(n.n., possibly n.n.n.)



• local (Anderson) disorder

HA
` =

∑

σ

λ` n`,σ , n`,σ ≡ c†`,σc`,σ

• Coulomb interaction between electrons HC
`m =

e2

|r` − rm|
screening leads to
• on-site (Hubbard) interaction

HU
` = U n`,↑n`,↓

• near-neighbor Coulomb interaction

HV
`m = V n` n`+r̂ , (n` ≡

∑

σ n`,σ) etc.
• Spin models
• Si localized quantum mechanical spins (S = 1/2, 1, 3/2, . . .)

states | − S〉 | − S + 1〉 . . . |S〉 ⇒ (2S + 1)N degrees of freedom

• Heisenberg exchange

HHeis
`m = J S` · Sm = Jz Sz`S

z
m +

1
2
Jxy

(

S+
` S
−
m + S−` S

+
m

)

• strong coupling limit of the Hubbard model at n = 1 (S = 1/2)

AF exchange → J = 4t2

U

• variations: Jz 6= Jxy (Ising or XY anisotropy), Hn
` = D(Sz` )2 (single-ion),

Hbq
`m = J2 (S` · Sm)2 (biquadratic)



• t–J model: strong-coupling limit of doped Hubbard

HtJ
`m = P Htb

`m P + J

(

S` · Sm −
1
4
n` nm

)

double occupancy projected out (P) - 3 states/site

• Anderson impurity - hybridized d (or f) orbital with on-site interaction

HAI
` = εdn

d
` + V

(

d†`,σc`,σ + H.c.
)

+ Und`,↑n
d
`,↓

single impurity or lattice (PAM) possible

• Kondo impurity - localized d spin S

HK
` =

JK
2

S` ·
(

c†`,ασα,βc`,β

)

limit of symmetric Anderson impurity at strong U



Lattices

square lattice Kagomé lattice

Described by

• unit cell

• Bravais lattice: translation vectors T1, T2 (2D)

T1

T2



• finite lattices: finite multiples of T1, T2 and boundary conditions
• periodic, antiperiodic
• open
• lattice symmetries:
• translation – multiples of Bravais lattice vector + periodic (AP) BCs
• rotations – e.g., π/2 for a square lattice (group C4v)
• reflection – about symmetry axis

Tilted clusters

40-site cluster, square lattice (a = 1)

T1 = (1, 0) , T2 = (0, 1)

Spanning vectors:

F1 = (6, 2) , F2 = (−2, 6)

In general,

F1 = (n,m) , F2 = (−m,n)
N = n2 +m2

translational symmetry satisfied

⇒ reflection/rotation symmetries become more complicated



I (ii) Representation of Many-Body States

mapping to (binary) integers:

• spin-1/2 Heisenberg:

|↑1↓2 . . . ↑N−1↑N〉 → 1102 . . . 1N−11N
spin flip = bit flip

• Hubbard

|N↑`N
↓
` 〉 → N↑`N

↓
` or |Ne

`S
z
` 〉

with Nσ = {0, 1}
• other models (t–J , S = 1 Heisenberg, . . .) more complicated

Symmetries: given group G with generators {gp}
[H, gp] = 0 → H block diagonal (Hilbert space can be divided)

• Continuous
• conservation of particle number, Sz – U(1) ⇒ permutations of bits
• total spin SU(2) difficult to combine with space group
⇒ spin inversion (Z2) can be used

• Space group
• translation: abelian local states
• point group (reflections and rotations): non-abelian in general

⇒ form symmetrized linear combination of local states



Example

Reduction of Hilbert space for S = 1/2 Heisenberg on
√

40×
√

40 cluster

• full Hilbert space:
• constrain to Sz = 0:
• using spin inversion:
• utilizing all 40 translations:
• using all 4 rotations:

dim= 240 = 1012

dim= 138× 109

dim= 69× 109

dim= 1.7× 109

dim= 430, 909, 650



I (iii) Complete Diagonalization

To solve H |ψ〉 = E |ψ〉 (H real, symmetric)

Method (Numerical Recipes, Ch. 11)

1. Householder transformation - reduction to tridiagonal form T
• ≈ 2n3/3 operations (4n3/3 with eigenvectors)

2. Diagonalization of a tridiagonal matrix
• roots of secular equation: inefficient
• QL (QR) algorithm - factorization T = Q L,
Q orthogonal, L lower triangular
≈ 30n2 operations (≈ 3n3 with eigenvectors)

Useful for:

• Simple problems, testing
• Matrix H dense
• Many eigenstates required

But

• H must be stored
• entire matrix must be diagonalized



I (iv) Iterative Diagonalization

Idea: project H onto a cleverly chosen subspace of dimension M � N
⇒ good convergence of extremal eigenstates

Methods

• Power method |vn〉 = Hn|v0〉
• conceptually simple, but converges poorly
• needs only two vectors, |vn〉 & |vn−1〉
• Lanczos: orthogonal vectors in Krylov subspace (spanned by {|vn〉})
• simple to implement
• memory efficient - only 3 vectors needed at once
• works well for sparse, short-range H

• Davidson: subspace expanded by diagonal approximation to inverse iteration
• higher-order convergence than Lanczos (usually)
• implementation more complicated
• works best for diagonally-dominated H

• Jacobi-Davidson: generalization of Davidson
• nontrivial problem-specific preconditioner (approximation to inverse)
• can be applied to generalized eigenvalue problem

A |x〉 = λ B |x〉 (A, B general, complex matrices)



Lanczos Algorithm

0) choose |u0〉 (random vector, |ψ̃0〉 from last iteration, . . .)

1) form |un+1〉 = H |un〉 − an|un〉 − b2n |un−1〉

where an = 〈un|H|un〉
〈un|un〉 and b2n = 〈un|un〉

〈un−1|un−1〉

2) Is 〈un+1|un+1〉 < ε?
yes: do 4) then stop
no: continue

3) repeat starting with 1) until n = M (maximum dimension)

4) diagonalize 〈ui|H|uj〉 (tridiagonal) using QL algorithm

diagonal elements D = (a0, a1, . . . , an),

off-diagonal elements O = (b1, b2, . . . , bn)
⇒ eigenvalue Ẽ0, eigenvector |ψ̃0〉

5) repeat starting with 0), setting |u0〉 = |ψ̃0〉



Convergence of Lanczos Algorithm

• eigenvalues converge starting with
extremal ones
• excited states can get “stuck” for a

while

at longer times:
• true eigenvalus converged
• spurious or “ghost” eigenvalues

produced
• multiplicity of eigenstates increases



Example: 2D t-J Model

Binding of 2 holes

R: average hole-hole distance
∆B: binding energy

(Poiblanc, Riera, & Dagotto, 1993)

• holes closer than two lattice spacings
• pair binding for J > Jc, but large finite-size effects

⇒ Does binding persist for larger lattices and constant doping (more holes)?



I (v) Dynamics with Exact Diagonalization

Time-dependent correlation functions

C(t) = −i〈ψ0|A(t) A†(0)|ψ0〉

Fourier transform to frequency space (retarded)

C̃(ω + iη) = 〈ψ0|A (ω + iη −H + E0)−1
A† |ψ0〉 (resolvent)

Spectral function

I(ω) = −1
π

lim
η→0+

Im C̃(ω + iη)

Examples from theory and experiment

name notation operators experiment

single-particle spectral weight A(k, ω) A = ck,σ photoemission

structure factor Szz(q, ω) A = Szq neutron scattering
optical conductivity σxx(ω) A = jx optics
4-spin correlation R(ω)

∑

kRk Sk · S−k Raman scattering



Methods

Krylov space method (continued fraction)

restart Lanzcos procedure with

|u0〉 =
1

√

〈ψ0|A A† |ψ0〉
A† |ψ0〉

In this Lanczos basis,

C̃(z = ω + iη + E0) =
〈ψ0|A A† |ψ0〉

z − a1 −
b22

z−a2−
b23

z−a3−...

Interpretation:

• calculation of eigenvector not needed

• consider Lehmann representation of spectral function

I(ω) =
∑

n

|〈ψn|A†|ψ0〉|2 δ(ω − En + E0)

⇒ poles and weights of C̃(z) determine I(ω)
• weight decreases with n → truncate after M steps

• spectrum discrete → finite broadening η



Correction vector method (Soos & Ramasesha, 1984)

Calculate vectors

|φ0〉 = A† |ψ0〉 , |φ1〉 = (ω + iη −H + E0)−1 |φ0〉
directly, then

I(ω) =
1
π

Im 〈φ0|φ1〉

Advantages:

• spectral weight calculated exactly for a given range
• nonlinear spectral functions computed by higher order correction vectors
• can be run in conjunction with Davidson algorithm

Disadvantage: system (H − z)|φ1〉 = |φ0〉 must be solved for each ω desired



Example: Dynamics in 2D t-J Model

Single-particle spectral weight A(k, ω) at k = kF = (π/2, π/2) for one hole

4× 4 lattice (Dagotto, Joynt, Moreo, Bacci, & Gagliano, 1993)

Does a single quasiparticle propagate in an antiferromagnet?

• strongly localized hole with string excitations at J/t = 1.0
• quasiparticle peak remains until J/t = 0.4
• “lump” with pseudogap at J/t = 0.2
• pseudogap due to finite-size effects at J/t = 0 (symmetric in ω)



I (vi) Finite Temperature with Exact Diagonalization

To calculate finite-T properties in orthonormal basis |n〉

〈A〉 =
1
Z

N
∑

n

〈n|Ae−βH|n〉 , Z =
N
∑

n

〈n|e−βH|n〉 ,

Problem: expensive to calculate for all |n〉

Idea: stochastic sampling of Krylov space (Jaklic & Prelovsek, 1994 )

〈A〉 ≈ 1
Z

∑

s

Ns
R

R
∑

r

M
∑

m

e−βε
(r)
m 〈r|Ψ(r)

m 〉〈Ψ(r)
m |A|r〉

where

Z ≈
∑

s

Ns
R

R
∑

r

M
∑

m

e−βε
(r)
m

∣

∣

∣〈r|Ψ(r)
m 〉
∣

∣

∣

2

•
∑

s over symmetry sectors of dimension Ns

•
∑

r average over R random starting vectors |Ψ(r)
0 〉

•
∑

m Lanczos propagation of starting vectors: |Ψ(r)
m 〉 at step m

⇒ useful if convergence good when M � Ns and R� Ns



Properties

• related to high-T expansion – T →∞ limit correct

• high to medium T properties in thermodynamic limit

• low-temperature limit correct (on finite lattice), up to sampling error

reduction of (large) sampling error: (Aichhorn et al., 2003)

start with:

〈A〉 =
1
Z

N
∑

n

〈n|e−βH/2Ae−βH/2|n〉 ,

⇒ twofold insertion of Lanczos basis → smaller fluctuations at low T

• can calculate

• thermodynamic properties: specific heat, entropy, static susceptibility, . . .
• static correlation functions
• dynamics: A(k, ω), Szz(q, ω), σxx(ω), . . .



Example: t-J Model at finite T

Hole concentration ch(= x) vs. chemical potential shift ∆µ = µh − µ0
h

2D t-J model, 16, 18, 20 sites, t/J = 0.3, t = 0.4eV

−0.4 −0.2 0.0 0.2 0.4
∆µ (eV)

0.0

0.1

0.2

0.3

c h

T/t=0.05
0.1
0.2
0.3
0.4
experiment

(Jaklic & Prelovsek, 1998)

• experimental results for LSCO from photoemission shift (Ino et al., 1997)
• holes only when µ < µ0

h ≈ −1.99t as T → 0
• compressibility finite ⇒ no phase separation



Optical conductivity compared with various cuprates at intermediate doping

0.0 0.2 0.4 0.6 0.8 1.0
ω (eV)

0.0

0.2

0.4

0.6

0.8

σ 
ρ 0

T/t=0.15
T/t=0.3
T/t=0.5
T/t=1.0

nh=3/16

J/t=0.3

La1.8Sr0.2CuO4

YBa2Cu3O7

Bi2Sr2CaCu2O8

(Jaklic & Prelovsek, 1998)

• Cuprates measured at T < 200K, ch somewhat uncertain
• high-T falloff slower for materials – transitions to higher excited states?
• experimental curves:
• LCSO, ch ∼ x = 0.2 (Uchida et al., 1991)
• BISCCO, ch ∼ 0.23 (Romero et al., 1992)
• YBCO, ch ∼ 0.23 (Battlogg et al., 1994)



Discussion: Exact Diagonalization

• Method conceptually straightforward, numerically exact

• Iterative diagonalization allows the treatment of surprisingly large matrices

• Efficient implementation using symmetries useful

• System sizes nevertheless strongly restricted

• Extensions to basic method can calculate
• dynamical correlation functions
• finite temperature properties

• Not mentioned here, but also possible:

calculation of full time evolution of quantum state with Lanczos

⇒ Benchmark for other methods, useful when other methods fail


