Numerical Methods in Many-body Physics

Reinhard M. Noack

Philipps-Universität Marburg

Exchange Lecture BME, Budapest, Spring 2007 International Research Training Group 790 Electron-Electron Interactions in Solids

Literature:

- R.M. Noack and S.R. Manmana, "Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems", in *Lectures on the Physics of Highly Correlated Electron Systems IX*, AIP Conference Proceedings 789, AIP, New York, 2005, 93–163 and cond-mat/0510321.
- Density Matrix Renormalization: A New Numerical Method in Physics, Lect. Notes Phys. 528, Eds. I. Peschel, X. Wang, M. Kaulke, and K. Hallberg, Springer, Berlin, 1999.
- E. Dagotto, "Correlated electrons in high-temperature superconductors", Rev. Mod. Phys. 66, 763-840 (1994).
- A. Booten and H. van der Vorst, "Cracking large-scale eigenvalue problems, part I: Algorithms", Computers in Phys. 10, No. 3, p. 239 (May/June 1996); "Cracking large-scale eigenvalue problems, part II: Implementations, Computers in Phys. 10, No. 4, p. 331 (July/August 1996).
- N. Laflorencie and D. Poilblanc, "Simulations of pure and doped low-dimensional spin-1/2 gapped systems" in *Quantum Magnetism*, Lect. Notes Phys. 645, Springer, Berlin, 2004, pp. 227-252 (2004), cond-mat/0408363.
- K. G. Wilson, "The renormalization group and critical phenomena", Rev. Mod. Phys. 55, 583-600 (1983).
- U. Schollwöck, "The density-matrix renormalization group", Rev. Mod. Phys. 77, 259 (2005).
- W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recipes in C [or C++]*, 2nd ed., Cambridge University Press (1993).

- I. Exact Diagonalization
 - (i) Introduction to interacting quantum systems
- (ii) Representation of many-body states
- (iii) Complete Diagonalization
- (iv) Iterative Diagonalization (Lanczos and Davidson)
- (v) Dynamics

(vi) Finite temperature

- II. Numerical Renormalization Group
 - (i) Anderson and Kondo problems
 - (ii) Numerical RG for the Kondo problem
 - (iii) Numerical RG for quantum lattice problems
 - (iv) Numerical RG for a noninteracting particle
- III. From the NRG to the Density Matrix Renormalization Group
 - (i) Better methods for the noninteracting particle
 - (ii) Density Matrix Projection for interacting systems
 - (iii) DMRG Algorithms
 - (iv) DMRG-like algorithm for the noninteracting particle
- IV. The DMRG in Detail
 - (i) Programming details
 - (ii) Measurements
 - (iii) Wavefunction transformations
 - *(iv)* Extensions to higher dimension

- I. Exact Diagonalization
 - (i) Introduction to interacting quantum systems
- (ii) Representation of many-body states
- (iii) Complete Diagonalization
- (iv) Iterative Diagonalization (Lanczos and Davidson)
- (v) Dynamics
- (vi) Finite temperature
- II. Numerical Renormalization Group
 - (i) Anderson and Kondo problems
 - (ii) Numerical RG for the Kondo problem
 - (iii) Numerical RG for quantum lattice problems
 - (iv) Numerical RG for a noninteracting particle
- III. From the NRG to the Density Matrix Renormalization Group
 - (i) Better methods for the noninteracting particle
 - (ii) Density Matrix Projection for interacting systems
 - (iii) DMRG Algorithms
 - (iv) DMRG-like algorithm for the noninteracting particle
- IV. The DMRG in Detail
 - (i) Programming details
 - (ii) Measurements
 - (iii) Wavefunction transformations
 - *(iv)* Extensions to higher dimension

- I. Exact Diagonalization
 - (i) Introduction to interacting quantum systems
- (ii) Representation of many-body states
- (iii) Complete Diagonalization
- (iv) Iterative Diagonalization (Lanczos and Davidson)
- (v) Dynamics
- (vi) Finite temperature
- II. Numerical Renormalization Group
 - (i) Anderson and Kondo problems
 - (ii) Numerical RG for the Kondo problem
 - (iii) Numerical RG for quantum lattice problems
 - (iv) Numerical RG for a noninteracting particle
- III. From the NRG to the Density Matrix Renormalization Group
 - (i) Better methods for the noninteracting particle
 - (ii) Density Matrix Projection for interacting systems
 - (iii) DMRG Algorithms
 - (iv) DMRG-like algorithm for the noninteracting particle
- IV. The DMRG in Detail
 - (i) Programming details
 - (ii) Measurements
 - (iii) Wavefunction transformations
 - *(iv)* Extensions to higher dimension

- I. Exact Diagonalization
 - (i) Introduction to interacting quantum systems
- (ii) Representation of many-body states
- (iii) Complete Diagonalization
- (iv) Iterative Diagonalization (Lanczos and Davidson)
- (v) Dynamics
- (vi) Finite temperature
- II. Numerical Renormalization Group
 - (i) Anderson and Kondo problems
 - (ii) Numerical RG for the Kondo problem
 - (iii) Numerical RG for quantum lattice problems
 - (iv) Numerical RG for a noninteracting particle
- III. From the NRG to the Density Matrix Renormalization Group
 - (i) Better methods for the noninteracting particle
 - (ii) Density Matrix Projection for interacting systems
 - (iii) DMRG Algorithms
 - (iv) DMRG-like algorithm for the noninteracting particle

IV. The DMRG in Detail

- (i) Programming details
- (ii) Measurements
- (iii) Wavefunction transformations
- *(iv)* Extensions to higher dimension

- V. Recent Developments in the DMRG
 - (i) Classical transfer matrices
 - *(ii)* Finite temperature
 - (iii) Dynamics
 - (iv) Quantum chemistry
 - (v) Time evolution
 - (vi) Matrix product states
- (vii) Quantum information
- VI. Quantum Monte Carlo Methods
 - (i) Review of classical Monte Carlo
 - (ii) Variational and Green's function QMC
 - (iii) World-line QMC
 - (iv) Determinantal QMC
 - (v) Loop Algorithm
 - (vi) Stochastic Series Expansion (SSE)
 - (vii) Diagrammatic QMC

- V. Recent Developments in the DMRG
 - (i) Classical transfer matrices
 - *(ii)* Finite temperature
 - (iii) Dynamics
 - *(iv)* Quantum chemistry
 - (v) Time evolution
 - (vi) Matrix product states
- (vii) Quantum information
- VI. Quantum Monte Carlo Methods
 - (i) Review of classical Monte Carlo
 - (ii) Variational and Green's function QMC
 - (iii) World-line QMC
 - (iv) Determinantal QMC
 - (v) Loop Algorithm
 - (vi) Stochastic Series Expansion (SSE)
 - (vii) Diagrammatic QMC

I. Exact Diagonalization

Direct diagonalization of Hamiltonian matrix on finite clusters

Goals

- ground state properties
- low-lying excitations
- dynamics, finite *T*, ...

Advantages

- almost any system can be treated
- almost any observable can be calculated
- quantum-number resolved quantities
- numerically exact (for finite cluster)

Limitation: exponential in lattice size

Largest sizes reached

• S = 1/2 spin models

square lattice: N = 40 triangular lattice: N = 39, star lattice: N = 42 maximum dimension of basis: 1.5 billion

• *t*-*J* models

checkerboard lattice with 2 holes: N = 32square lattice with 2 holes: N = 32maximum dimension of basis: 2.8 billion

- Hubbard models square lattice at half filling: N = 20quantum dot structure: N = 20maximum dimension of basis: 3 billion
- Holstein models

chain with N = 14 + phonon pseudo-sites maximum dimension of basis: 30 billion

I (i) Interacting Quantum Systems

Here: discrete, finite case

- system of N quantum mechanical subsystems, $\ell=1,\ldots,N$
- finite number of basis states per subsystem

 $|\alpha_{\ell}\rangle$, $\alpha_{\ell} = 1, \dots, s_{\ell}$

• more general case: $s_{\ell} \rightarrow \infty$ (continuum or thermodynamic limit)

 $N \rightarrow \infty$ (thermodynamic limit)

$$\ell \to x$$
 (continuous quantum field)

Properties:

• Basis *direct product* of component basis

 $|\alpha_1, \alpha_2, \dots, \alpha_N\rangle \equiv |\alpha_1\rangle \otimes |\alpha_2\rangle \otimes \dots \otimes |\alpha_N\rangle$

 \Rightarrow total number of states: $\prod_{\ell=1}^{N} s_{\ell}$

arbitrary state in this basis

$$|\psi\rangle = \sum_{\{\alpha_{\ell}\}} \psi(\alpha_1, \alpha_2, \dots, \alpha_N) |\alpha_1, \alpha_2, \dots, \alpha_N\rangle$$

• behavior governed by Schrödinger equation

 $H |\Psi(t)\rangle = i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle$ or $H |\psi\rangle = E |\psi\rangle$ (time-independent)

Hamiltonians

In general, Hamiltonians can connect arbitrary numbers of subsystems

$$H = \sum_{\ell} H_{\ell}^{(1)} + \sum_{\ell,m} H_{\ell m}^{(2)} + \ldots + \sum_{\ell,m,p} H_{\ell m n p}^{(4)} + \ldots$$

- $H_{\ell}^{(1)}$ usually determines $|\alpha_{\ell}\rangle$ $H_{\ell m}^{(2)}$, sometimes $H_{\ell m n p}^{(4)}$ will be important here
- $H_{\ell m}^{(2)}$ often short-ranged

Typical terms:

• tight-binding term:

• localized Wannier orbitals (unfilled d- or f- orbitals in transition metals)

- states $|0\rangle$, $|\uparrow\rangle$, $|\downarrow\rangle$, $|\uparrow\downarrow\rangle$ per orbital $\rightarrow 4^N$ degrees of freedom
- overlap between near orbitals "hopping" t_{lm} short ranged (n.n., possibly n.n.n.)

• local (Anderson) disorder

$$H^{\rm A}_\ell = \sum_{\sigma} \lambda_\ell \; n_{\ell,\sigma} \quad , \qquad n_{\ell,\sigma} \equiv c^{\dagger}_{\ell,\sigma} c_{\ell,\sigma} \blacksquare$$

 $H_{\ell m}^{\rm C} = \frac{e^2}{|\mathbf{r}_{\ell} - \mathbf{r}_{\rm m}|}$

- Coulomb interaction between electrons screening leads to
 - on-site (Hubbard) interaction

$$H^{\mathrm{U}}_{\ell} = U \; n_{\ell,\uparrow} n_{\ell,\downarrow}$$

near-neighbor Coulomb interaction

$$H^{
m V}_{\ell m} = V \; n_\ell \; n_{\ell+\hat{\mathbf{r}}}$$
 , $(n_\ell \equiv \sum_\sigma n_{\ell,\sigma})$ etc.

- Spin models
 - \mathbf{S}_i localized quantum mechanical spins (S = 1/2, 1, 3/2, ...)states $|-S\rangle |-S+1\rangle ... |S\rangle \Rightarrow (2S+1)^N$ degrees of freedom
 - Heisenberg exchange

$$H_{\ell m}^{\text{Heis}} = J \, \mathbf{S}_{\ell} \cdot \mathbf{S}_{m} = J^{z} \, S_{\ell}^{z} S_{m}^{z} + \frac{1}{2} J^{xy} \left(S_{\ell}^{+} S_{m}^{-} + S_{\ell}^{-} S_{m}^{+} \right)$$

• strong coupling limit of the Hubbard model at n = 1 (S = 1/2)

-
$$AF$$
 exchange $\rightarrow J = \frac{4t^2}{U}$

• variations: $J^z \neq J^{xy}$ (Ising or XY anisotropy), $H^n_{\ell} = D(S^z_{\ell})^2$ (single-ion), $H^{bq}_{\ell m} = J_2 \ (\mathbf{S}_{\ell} \cdot \mathbf{S}_m)^2$ (biquadratic) • t-J model: strong-coupling limit of doped Hubbard

$$H_{\ell m}^{tJ} = \mathcal{P} \ H_{\ell m}^{tb} \ \mathcal{P} + J \ \left(\mathbf{S}_{\ell} \cdot \mathbf{S}_{m} \ - \ \frac{1}{4} n_{\ell} \ n_{m} \right)$$

double occupancy projected out (\mathcal{P}) - 3 states/site

• Anderson impurity - hybridized d (or f) orbital with on-site interaction $H_{\ell}^{AI} = \varepsilon_d n_{\ell}^d + V \left(d_{\ell,\sigma}^{\dagger} c_{\ell,\sigma} + \text{H.c.} \right) + U n_{\ell,\uparrow}^d n_{\ell,\downarrow}^d$

single impurity or lattice (PAM) possible

• Kondo impurity - localized d spin ${f S}$

$$H_{\ell}^{K} = \frac{J_{K}}{2} \mathbf{S}_{\ell} \cdot \left(c_{\ell,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha,\beta} c_{\ell,\beta} \right)$$

limit of symmetric Anderson impurity at strong \boldsymbol{U}

Lattices

square lattice

Described by

• unit cell

• Bravais lattice: translation vectors \mathbf{T}_1 , \mathbf{T}_2 (2D)

- finite lattices: finite multiples of \mathbf{T}_1 , \mathbf{T}_2 and boundary conditions
 - periodic, antiperiodic
 - open
- lattice symmetries:
 - translation multiples of Bravais lattice vector + periodic (AP) BCs
 - rotations e.g., $\pi/2$ for a square lattice (group C_{4v})
 - reflection about symmetry axis

Tilted clusters

40-site cluster, square lattice (a = 1) $T_1 = (1,0), T_2 = (0,1)$

Spanning vectors:

$$\mathbf{F}_1 = (6,2) , \ \mathbf{F}_2 = (-2,6)$$

In general,

$$\mathbf{F}_1 = (n, m) , \ \mathbf{F}_2 = (-m, n)$$

 $N = n^2 + m^2$

translational symmetry satisfied

⇒ reflection/rotation symmetries become more complicated

I (ii) Representation of Many-Body States

mapping to (binary) integers:

• spin-1/2 Heisenberg:

 $|\!\uparrow_1\!\!\downarrow_2\ldots\uparrow_{N-1}\!\!\uparrow_N\rangle\to 1_10_2\ldots 1_{N-1}1_N$ spin flip = bit flip

• Hubbard

$$\begin{split} |N_{\ell}^{\uparrow}N_{\ell}^{\downarrow}\rangle &\to N_{\ell}^{\uparrow}N_{\ell}^{\downarrow} \quad \text{ or } \quad |N_{\ell}^{e}S_{\ell}^{z}\rangle \\ \text{with } N_{\sigma} &= \{0,1\} \end{split}$$

• other models (t–J, S = 1 Heisenberg, ...) more complicated

Symmetries: given group \mathcal{G} with generators $\{g_p\}$ $[H, g_p] = 0 \rightarrow H$ block diagonal (Hilbert space can be divided)

- Continuous
 - conservation of particle number, $S^z U(1) \Rightarrow$ permutations of bits
 - total spin SU(2) difficult to combine with space group \Rightarrow spin inversion (Z₂) can be used
- Space group
 - translation: abelian local states
 - point group (reflections and rotations): non-abelian in general
- ⇒ form symmetrized linear combination of local states

Example

Reduction of Hilbert space for S = 1/2 Heisenberg on $\sqrt{40} \times \sqrt{40}$ cluster

- full Hilbert space:
- constrain to $S_z = 0$:
- using spin inversion:
- utilizing all 40 translations: dim = 1.7×10^9
- using all 4 rotations:

- dim= $2^{40} = 10^{12}$
- $dim = 138 \times 10^9$
- $\mathsf{dim} = 69 imes 10^9$

 - $\dim = 430, 909, 650$

I (iii) Complete Diagonalization

To solve $H |\psi\rangle = E |\psi\rangle$ (*H* real, symmetric)

Method (*Numerical Recipes*, Ch. 11)

- 1. Householder transformation reduction to tridiagonal form T
 - $\approx 2n^3/3$ operations ($4n^3/3$ with eigenvectors)
- 2. Diagonalization of a tridiagonal matrix
 - roots of secular equation: inefficient
 - QL (QR) algorithm factorization T = Q L,
 - Q orthogonal, L lower triangular
 - $\approx 30n^2$ operations ($\approx 3n^3$ with eigenvectors)

Useful for:

- Simple problems, testing
- Matrix H dense
- Many eigenstates required

But

- *H* must be stored
- entire matrix must be diagonalized

I (iv) Iterative Diagonalization

Idea: project H onto a cleverly chosen subspace of dimension $M \ll N$ \Rightarrow good convergence of extremal eigenstates

Methods

- Power method $|v_n\rangle = H^n |v_0\rangle$
 - conceptually simple, but converges poorly
 - needs only two vectors, $|v_n
 angle$ & $|v_{n-1}
 angle$
- Lanczos: orthogonal vectors in Krylov subspace (spanned by $\{|v_n\rangle\}$)
 - simple to implement
 - memory efficient only 3 vectors needed at once
 - works well for sparse, short-range H
- Davidson: subspace expanded by diagonal approximation to inverse iteration
 - higher-order convergence than Lanczos (usually)
 - implementation more complicated
 - works best for diagonally-dominated H
- Jacobi-Davidson: generalization of Davidson
 - nontrivial problem-specific preconditioner (approximation to inverse)
 - can be applied to generalized eigenvalue problem

 $A |x\rangle = \lambda B |x\rangle$ (A, B general, complex matrices)

Lanczos Algorithm

0) choose $\ket{u_0}$ (random vector, $\ket{ ilde{\psi}_0}$ from last iteration, . . .)

1) form
$$|u_{n+1}\rangle = H |u_n\rangle - a_n |u_n\rangle - b_n^2 |u_{n-1}\rangle$$

where $a_n = \frac{\langle u_n | H | u_n \rangle}{\langle u_n | u_n \rangle}$ and $b_n^2 = \frac{\langle u_n | u_n \rangle}{\langle u_{n-1} | u_{n-1} \rangle}$
2) Is $\langle u_{n+1} | u_{n+1} \rangle < \varepsilon$?
yes: do 4) then stop
no: continue

- 3) repeat starting with 1) until n = M (maximum dimension)
- 4) diagonalize $\langle u_i | H | u_j \rangle$ (tridiagonal) using QL algorithm diagonal elements $\mathbf{D} = (a_0, a_1, \dots, a_n)$, off-diagonal elements $\mathbf{O} = (b_1, b_2, \dots, b_n)$ \Rightarrow eigenvalue \tilde{E}_0 , eigenvector $|\tilde{\psi}_0\rangle$

5) repeat starting with 0), setting $|u_0
angle=| ilde{\psi}_0
angle$

Convergence of Lanczos Algorithm

- eigenvalues converge starting with extremal ones
- excited states can get "stuck" for a while

at longer times:

- true eigenvalus converged
- spurious or "ghost" eigenvalues produced
- multiplicity of eigenstates increases

Example: 2D *t*-*J* **Model**

Binding of 2 holes

- holes closer than two lattice spacings
- pair binding for $J > J_c$, but large finite-size effects

⇒ Does binding persist for larger lattices and constant doping (more holes)?

I (v) Dynamics with Exact Diagonalization

Time-dependent correlation functions

 $C(t) = -i\langle \psi_0 | A(t) \ A^{\dagger}(0) | \psi_0 \rangle$

Fourier transform to frequency space (retarded)

 $\tilde{C}(\omega + i\eta) = \langle \psi_0 | A (\omega + i\eta - H + E_0)^{-1} A^{\dagger} | \psi_0 \rangle \qquad \text{(resolvent)}$

Spectral function

$$I(\omega) = -\frac{1}{\pi} \lim_{\eta \to 0^+} \operatorname{Im} \tilde{C}(\omega + i\eta)$$

Examples from theory and experiment

name	notation	operators	experiment
single-particle spectral weight	$A({f k},\omega)$	$A = c_{\mathbf{k},\sigma}$	photoemission
structure factor	$S_{zz}({f q},\omega)$	$A=S^{z}_{\mathbf{q}}$	neutron scattering
optical conductivity	$\sigma_{xx}(\omega)$	$A = j_x$	optics
4-spin correlation	$R(\omega)$	$\sum_{\mathbf{k}} R_{\mathbf{k}} \mathbf{S}_{\mathbf{k}} \cdot \mathbf{S}_{-\mathbf{k}}$	Raman scattering

Methods

Krylov space method (continued fraction)

restart Lanzcos procedure with

$$|u_0\rangle = \frac{1}{\sqrt{\langle\psi_0|A A^{\dagger}|\psi_0\rangle}} A^{\dagger} |\psi_0\rangle$$

In this Lanczos basis,

$$\tilde{C}(z = \omega + i\eta + E_0) = \frac{\langle \psi_0 | A A^{\dagger} | \psi_0 \rangle}{z - a_1 - \frac{b_2^2}{z - a_2 - \frac{b_3^2}{z - a_3 - \dots}}}$$

Interpretation:

- calculation of eigenvector not needed
- consider Lehmann representation of spectral function

$$I(\omega) = \sum_{n} |\langle \psi_n | A^{\dagger} | \psi_0 \rangle|^2 \,\delta(\omega - E_n + E_0)$$

 \Rightarrow poles and weights of $\tilde{C}(z)$ determine $I(\omega)$

- weight decreases with $n \rightarrow {\rm truncate}$ after M steps
- spectrum discrete \rightarrow finite broadening η

Correction vector method

(Soos & Ramasesha, 1984)

Calculate vectors

 $|\phi_0\rangle = A^{\dagger} |\psi_0\rangle$, $|\phi_1\rangle = (\omega + i\eta - H + E_0)^{-1} |\phi_0\rangle$

directly, then

$$I(\omega) = \frac{1}{\pi} \operatorname{Im} \langle \phi_0 | \phi_1 \rangle$$

Advantages:

- spectral weight calculated exactly for a given range
- nonlinear spectral functions computed by higher order correction vectors
- can be run in conjunction with Davidson algorithm

Disadvantage: system $(H - z) |\phi_1\rangle = |\phi_0\rangle$ must be solved for each ω desired

Example: Dynamics in 2D *t*-*J* **Model**

Single-particle spectral weight $A(\mathbf{k},\omega)$ at $\mathbf{k} = \mathbf{k}_F = (\pi/2,\pi/2)$ for one hole

4 × 4 lattice (Dagotto, Joynt, Moreo, Bacci, & Gagliano, 1993)

Does a single quasiparticle propagate in an antiferromagnet?

- strongly localized hole with string excitations at J/t = 1.0
- quasiparticle peak remains until J/t = 0.4
- "lump" with pseudogap at J/t = 0.2
- pseudogap due to finite-size effects at J/t = 0 (symmetric in ω)

I (vi) Finite Temperature with Exact Diagonalization

To calculate finite-T properties in orthonormal basis $|n\rangle$

$$\langle A \rangle = \frac{1}{Z} \sum_{n}^{N} \langle n | A e^{-\beta H} | n \rangle , \qquad \qquad Z = \sum_{n}^{N} \langle n | e^{-\beta H} | n \rangle ,$$

Problem: expensive to calculate for all $|n\rangle$

Idea: stochastic sampling of Krylov space (Jaklic & Prelovsek, 1994)

$$\langle A \rangle \approx \frac{1}{Z} \sum_{s} \frac{N_s}{R} \sum_{r}^{R} \sum_{m}^{M} e^{-\beta \varepsilon_m^{(r)}} \langle r | \Psi_m^{(r)} \rangle \langle \Psi_m^{(r)} | A | r \rangle$$

where

$$Z \approx \sum_{s} \frac{N_s}{R} \sum_{r}^{R} \sum_{m}^{M} e^{-\beta \varepsilon_m^{(r)}} \left| \langle r | \Psi_m^{(r)} \rangle \right|^2$$

- \sum_{s} over symmetry sectors of dimension N_{s}
- \sum_{r} average over R random starting vectors $|\Psi_{0}^{(r)}\rangle$
- \sum_m Lanczos propagation of starting vectors: $|\Psi_m^{(r)}
 angle$ at step m
- \Rightarrow useful if convergence good when $M \ll N_s$ and $R \ll N_s$

Properties

- related to high-T expansion $T \rightarrow \infty$ limit correct
- high to medium T properties in thermodynamic limit
- low-temperature limit correct (on finite lattice), up to sampling error reduction of (large) sampling error: (Aichhorn *et al.*, 2003) start with:

$$\langle A \rangle = \frac{1}{Z} \sum_{n}^{N} \langle n | e^{-\beta H/2} A e^{-\beta H/2} | n \rangle ,$$

- \Rightarrow twofold insertion of Lanczos basis \rightarrow smaller fluctuations at low T
- can calculate
 - thermodynamic properties: specific heat, entropy, static susceptibility, ...
 - static correlation functions
 - dynamics: $A(\mathbf{k},\omega)$, $S_{zz}(\mathbf{q},\omega)$, $\sigma_{xx}(\omega)$, ...

Example: t-J Model at finite T

Hole concentration $c_h(=x)$ vs. chemical potential shift $\Delta \mu = \mu_h - \mu_h^0$ 2D *t*-*J* model, 16, 18, 20 sites, t/J = 0.3, t = 0.4eV

- experimental results for LSCO from photoemission shift (Ino et al., 1997)
- holes only when $\mu < \mu_h^0 \approx -1.99t$ as $T \to 0$
- compressibility finite \Rightarrow no phase separation

Optical conductivity compared with various cuprates at intermediate doping

- Cuprates measured at T < 200K, c_h somewhat uncertain
- high-T falloff slower for materials transitions to higher excited states?
- experimental curves:
 - LCSO, $c_h \sim x = 0.2$ (Uchida *et al.*, 1991)
 - BISCCO, $c_h \sim 0.23$ (Romero *et al.*, 1992)
 - YBCO, $c_h \sim 0.23$ (Battlogg *et al.*, 1994)

Discussion: Exact Diagonalization

- Method conceptually straightforward, numerically exact
- Iterative diagonalization allows the treatment of surprisingly large matrices
- Efficient implementation using symmetries useful
- System sizes nevertheless strongly restricted
- Extensions to basic method can calculate
 - dynamical correlation functions
 - finite temperature properties
- Not mentioned here, but also possible: calculation of full time evolution of quantum state with Lanczos
- ⇒ Benchmark for other methods, useful when other methods fail