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Abstract: These introductory notes are about functional renormalization group

equations and some of their applications. It is emphasised that the applicability of this

method extends well beyond critical systems, it actually provides us a general purpose

algorithm to solve strongly coupled quantum field theories. The renormalization group

equation of F. Wegner and A. Houghton is shown to resum the loop-expansion. Another

version, due to J. Polchinski, is obtained by the method of collective coordinates and can

be used for the resummation of the perturbation series. The genuinely non-perturbative

evolution equation is obtained by a manner reminiscent of the Schwinger-Dyson equations.

Two variants of this scheme are presented where the scale which determines the order of

the successive elimination of the modes is extracted from external and internal spaces.

The renormalization of composite operators is discussed briefly as an alternative way

to arrive at the renormalization group equation. The scaling laws and fixed points are

considered from local and global points of view. Instability induced renormalization and

new scaling laws are shown to occur in the symmetry broken phase of the scalar theory.

The flattening of the effective potential of a compact variable is demonstrated in case of

the sine-Gordon model. Finally, a manifestly gauge invariant evolution equation is given

for QED.
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1 Introduction

The origin of renormalization goes back to hydrodynamics, the definition of the mass

and other dynamical characteristics of bodies immersed into fluids. The more systematic

elaboration of this concept is based on the (semi) group property of changing the observa-

tional scale in a theory. The renormalization group (RG) method has already been used

with a number of different goals. Some of the more important directions are (i) to remove

U.V. divergences [1], (ii) to describe the scale dependence of physical parameters and to

classify the parameters of a theory around a critical point according to their impact on

the dynamics [2], (iii) to express the highly singular product of local field variables [3],

(iv) to resum the perturbation expansion in Quantum Field Theory [4] and in the case of

differential equations [5] and finally (v) to solve strongly coupled theories. Furthermore,

the RG method offers a systematic way of organizing our understanding of a complicated

dynamics by successively eliminating degrees of freedom. The distinctive feature of the

method is that it retains the influence of the eliminated subsystem on the rest.

The main subject of these lectures is application (v) in the framework of the functional

formalism, the search of a general purpose algorithm to handle non-perturbative and not

necessarily critical theories.

The strategy of the RG scheme for the resummation of the perturbation expansion is to

introduce and to evolve effective vertices instead of dealing with higher order corrections.

The result is an iterative procedure where the contributions to the effective vertices

computed at a given step in the leading order of the perturbation expansion and inserted

in a graph at the next step reproduce the higher order corrections. In the traditional

implementation of the RG procedure one follows the evolution of few coupling constants

only. Our concern will be an improvement on this method in order to follow the evolution

of a large number of coupling constants. This is realized by means of the functional

formalism where the evolution is constructed for the generator function for all coupling

constants.

Before starting let us review the conventional multiplicative RG schemes as used in

Quantum Field Theory. This scheme is based on the relation

G
(n)
R (p1, · · · , pn; gR, µ) = Z−n/2G

(n)
B (p1, · · · , pn; gB,Λ) + O

(

µ2

Λ2

)

+ O
(

p2
j

Λ2

)

, (1)

for the Green functions, where Λ and µ denote the U.V. cut-off and the substraction

(observational) scales, respectively. Z depends on either gR or gB and the ratio Λ/µ (the

mass is treated as one of the parameters g). The ignored terms stand for non-universal,

cut-off dependent interactions.

Bare RG equation: The renormalized theory is independent of the choice of the

cut-off,

Λ
d

dΛ
G

(n)
R (p1, · · · , pn; gB,Λ) = Λ

d

dΛ

[

Zn/2(gB,Λ)G
(n)
B (p1, · · · , pn; gB,Λ)

]

= 0, (2)

where the renormalized coupling constants and the substraction scale are kept fixed in

computing the derivatives. The equation involving the renormalized quantities is not
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too useful. It is the multiplicative renormalization scheme which leads to the second

equation, expressing the possibility of compensating the change of the substraction scale

by the modification of the coupling constants gB(Λ) arising from the solution of the

differential equation by the method of characteristics. Notice that the compensation

is possible only if the list of the coupling constants {gB} includes all relevant coupling

constants of the appropriate scaling regime, around the U.V. fixed point.

Renormalized RG equation: The bare theory is independent of the choice of the sub-

straction scale,

µ
d

dµ
G

(n)
B (p1, · · · , pn; gR, µ) = µ

d

dµ

[

Z−n/2(gR, µ)G
(n)
R (p1, · · · , pn; gR, µ)

]

= 0, (3)

where the bare coupling constants and the cut-off are kept fixed.

Callan-Symanzik equation: The change of the mass in the propagator is governed by

the expression
d

dm2

1

p2 −m2
=

1

p2 −m2
· 1

p2 −m2
(4)

which can be used to find out the dependence on the renormalized mass when the cut-off

and all bare parameters except the bare mass are kept fixed. The resulting evolution

equation [6] is similar to the two previous RG equations except that the derivative is

with respect to the bare mass instead of the cut-off or the substraction scale and the

right hand side is non-vanishing. This latter feature indicates that contrary to the first

two schemes the evolution gR(m2) in the Callan-Symanzik equation is not a renormalized

trajectory, it connects theories with different mass.

The serious limitation of these equations is that they are asymptotic, i.e., are appli-

cable in the regime µ2, p2 << Λ2 only. In fact, the omission of the non-universal terms in

the multiplicative renormalization scheme (1) requires that we stay away from the cut-off.

In models with IR instability (spontaneous symmetry breaking, dynamical mass gener-

ation,...) another limitation arises, m2
dyn << µ2, p2, to ensure that we stay in the U.V.

scaling regime. This is because the IR scaling regime may have relevant operators which

are irrelevant on the U.V. side [7]. In more realistic models with several scaling regimes

which have different relevant operator sets we need non-asymptotic methods which can

interpolate between the different scaling regimes. This is achieved by the functional

extensions of the RG equation based on the infinitesimal blocking steps.

2 Functional RG equations

There are different avenues to arrive at a functional RG equation. The simplest is to follow

Wilson-Kadanoff blocking in continuous space-time. It leads to a functional differential

equation describing the cut-off dependence of the bare action. Better approximation

schemes can be worked out when the modes are suppressed smoothly as the cut-off

changes. The parameters of the bare action which are followed by these RG equations

are related to observables qualitatively only. It is more advantageous to transform the RG

equation for the effective action whose parameters have direct relation with observables.
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For the sake of simplicity we consider an Euclidean theory in d dimensions for a scalar

field φx governed by the action SB[φ]. An O(d) invariant U.V. cut-off Λ is introduced in

the momentum space by requiring φp = 0 for |p| > Λ to render the generator functional

e
1
h̄
W [j] =

∫

D[φ]e−
1
h̄
SB[φ]+ 1

h̄
j·φ (5)

finite. We shall use the following notation conventions, stated below: In order to render

the functional manipulations well defined we always assume discrete spectrum, i.e., the

presence of U.V. and IR regulators, say a lattice spacing a and system volume V = adNd.

The space-time integrals are
∫

ddx = ad
∑

x =
∫

x,
∫

x fxgx = f · g, ∫ ddp/(2π)d = V −1∑

p =
∫

p, fp =
∫

x e
−ipxfx, and fx =

∫

p e
ipxfp. The Dirac-deltas δx,y = a−dδKx,y and δp,q = V δKp,q

are expressed in terms of the Kronecker-deltas δKx,y and δKp,q.

2.1 Resumming the loop expansion

We start with the simplest form of infinitesimal blocking-step RG equations which is the

functional extension of the bare RG scheme mentioned above [8].

2.1.1 Blocking in continuous space-time

We shall denote the moving U.V. cut-off by k. Its lowering k → k − ∆k leads to the

blocking transformation of the action which preserves the generator functional (5). Due

to the presence of the source this blocking introduces an explicit source dependence in

the action,
∫

Dk[φ]e−
1
h̄
Sk[φ;j]+ 1

h̄
j·φ =

∫

Dk−∆k[φ]e−
1
h̄
Sk−dk[φ;j]+ 1

h̄
j·φ, (6)

where Dk[φ] stands for the integration measure over the functional space Fk consisting

of functions whose Fourier transform is non-vanishing for |p| ≤ k. In order to avoid

this complication one usually assumes j ∈ Fk−∆k. In this case the blocking becomes

a mapping Sk[φ] → Sk−∆k[φ] and it is enough impose the invariance of the partition

function

e−
1
h̄
Sk−∆k[φ] =

∫

D[φ̃]e−
1
h̄
Sk[φ+φ̃], (7)

where φ ∈ Fk−∆k and φ̃ ∈ Fk\Fk−∆k.

The evaluation of the path integral by means of the loop-expansion gives immediately

the functional RG equation,

Sk−∆k[φ] = Sk[φ+ φ̃cl] +
h̄

2
tr ln

δ2Sk[φ+ φ̃cl]

δφ̃δφ̃
+ O

(

h̄2
)

, (8)

where φ̃cl denotes the saddle point. The trace is over the functional space φ̃ ∈ Fk\Fk−∆k

and O
(

h̄2
)

represents the higher loop contributions. We write this equation as

Sk[φ] − Sk−∆k[φ] = Sk[φ] − Sk[φ+ φ̃cl]
︸ ︷︷ ︸

tree level

− h̄

2
tr ln

δ2Sk[φ+ φ̃cl]

δφ̃δφ̃
+ O

(

h̄2
)

︸ ︷︷ ︸

loop contributions

. (9)
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(a)

(b)

Fig. 1 Graphs contributing to the blocking, (a): tree-level, (b): one-loop corrections. The
dashed line stands for a particle of momentum |p| = k and the solid lines represent φ.

When can one safely assume that the saddle point is trivial, φ̃cl = 0? Let us suppose

that φx is weakly and slowly varying, ie φx = Φ + ηx where ηx ≈ 0 and the characteristic

momentum of η is small with respect to the cut-off k. Then the fluctuating component

η appears as an external source breaking translation invariance. The saddle point, φ̃ ∈
Fk\Fk−∆k, being inhomogeneous exists as η → 0 only if the external space-time symmetry

is broken dynamically.

But a ∆k-dependent small saddle point, φ̃cl = O (∆kn), n > 0 may occur with-

out breaking external symmetries. In this case we expand in φ̃cl and find the Wegner-

Houghton (WH) equation [8]

Sk[φ] − Sk−∆k[φ] =
1

2

δSk[φ]

δφ̃
·
(

δ2Sk[φ]

δφ̃δφ̃

)−1

· δSk[φ]

δφ̃
(10)

− h̄
2
tr ln

δ2Sk[φ]

δφ̃δφ̃
+ O

(

h̄2
)

+ O
(

∆k2
)

,

where all functional derivatives are taken at φ̃ = 0. The saddle point can be omitted in

the argument of the logarithmic function because the trace brings a factor of ∆k as we

shall see below. The discussion of the tree-level renormalization when φ̃cl is non-vanishing

and finite as ∆k → 0 is deferred to section 3.3.

One can understand the loop contribution better by splitting the action into the sum

of the quadratic part and the rest, S = 1
2
φ ·G−1

0 · φ+ Si and expanding in Si,

tr ln
δ2Sk[φ]

δφ̃δφ̃
= tr lnG−1

0 −
∞∑

n=1

(−1)n

n
tr

(

δ2Sk[φ]

δφ̃δφ̃
·G0

)n

. (11)

We recovered the sum of one-loop graphs. The loop corrections close on all possible

pair of φ̃ legs with the propagator G0. The tree-level piece describes the feedback of the

change of the cut-off on the dynamics of the classical background field φ. This is classical

contribution because the cut-off controls the configuration space, the number of degrees

of freedom. Some of the graphs contributing to the right hand side are shown in Fig. 1.

The point of central importance is that ∆k serves here as a new small parameter

to suppress the higher-loop contributions. As an example consider the simplest case,
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φx = Φ, φ̃cl = 0 with the ansatz

Sk[φ] =
∫

x

[
1

2
Zk(φx)(∂µφx)

2 + Uk(φx)
]

, (12)

for the action with Z(φ) = 1,

Uk−∆k(Φ) = Uk(Φ) +
h̄

2

∫

k−∆k<|p|<k
ln[p2 + U ′′

k (Φ)] + O
(

(h̄∆k)2
)

. (13)

Each loop-integral is over the shell k − ∆k < |p| < k in momentum space. So long

the propagator is non-singular in the integration domain the n-loop integrals will be

proportional to the n-th power of the integration volume, giving a dimensionless small

suppression parameter ≈ (∆k/k)n,the proportion of the modes eliminated with those

left. The question of the singularity will be considered in section 3.2.2. The higher loop

contributions are suppressed in the infinitesimal blocking step limit and the one-loop

evolution equation turns out to be an exact functional equation. The limit ∆k → 0 is

safe for the loop contributions but more care is needed when the saddle point is non-trivial

because the tree-level contribution might be singular in this limit.

Notice that the convergence of the loop expansion was assumed in the argument

above. Another word of caution is in order about Eq. (9). Not only the trace but the

logarithm function itself is considered within the subspace φ̃ ∈ Fk\Fk−∆k, a rather formal

observation which becomes essential later.

It is sometimes easy to arrive at exact, but unmanageable equations. The problem

is rather to find an approximation, an acceptable compromise between precision and

simplicity. By assuming the absence of non-local interactions and the homogeneity of the

vacuum the blocked action is usually expanded in the gradient of the field, leading to the

ansatz (12) for the action where contributions O (∂4) are neglected. This step is the key

to the success of the RG method. The point is that the blocked action can be identified

by evaluating the integral (7) for different background configurations. The determination

of the blocked action is an over-constrained problem because there are ’more’ background

field configurations than coupling constants in a given ansatz. The tacit assumption, that

the effective action is well defined, i.e., independent of the set of configurations used to

read off its coupling constants, gives the real power of the RG method: it enables us to

make predictions.

2.1.2 Local potential approximation

In order to relate the WH equation to conventional perturbation expansion we shall use

the ansatz (12) with Z = 1, in the local potential approximation. In order to determine

the only non-trivial piece of this action the potential Uk(φ) it is sufficient to consider a

homogeneous field φ(x) = Φ in (9). The saddle point is vanishing as mentioned above,

φ̃cl = 0, so long as the external space-time symmetries are unbroken. The blocking

equation simplified in this manner yields Eq. (13), the projection of the WH equation

into the restricted space of actions,

U̇k(Φ) = − h̄Ωdk
d

2(2π)d
ln[k2 + U

(2)
k (Φ)] (14)
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Fig. 2 The first four one-loop graphs contributing to the WH equation in the local potential
approximation when the potential U(φ) is truncated to the terms φ2 and φ4. The dashed line
corresponds a particle of momentum |p| = k.

where the dot stands for k∂k and Ωd = 2πd/2/Γ(d/2) denotes the solid angle.

The expansion of the logarithmic function leads to the series

U̇k(Φ) = − h̄Ωdk
d

2(2π)d






ln[k2 +m2] −

∞∑

n=1

(−1)n

n




U

(2)
k (Φ) −m2

k2 +m2





n



, (15)

where m2 = U (2)(0), the sum of the one-loop graphs whose external legs have vanishing

momentum and the internal lines carry momentum |p| = k, cf Fig. 2, the leading order

contributions to the renormalization of the coupling constants gn in the loop expansion.

The partial resummation of the perturbation series performed by the WH equation

can easily be seen by comparing the solution of Eq. (14) with those obtained in the

independent mode approximation, where the k-dependence is ignored in the right hand

side of the equation,

Uk(Φ) = Uλ(Φ) − h̄

2

∫

k<|p|<Λ
ln[p2 + U

(2)
Λ (Φ)]. (16)

One recovers the one-loop effective potential at the IR fixed point, Veff(Φ) = Uk=0(Φ).

This is not by accident and remains valid for the complete solution, as well, because

e−V Veff (Φ) is the distribution of the homogeneous mode and the blocking (7) at k = 0

retains the homogeneous mode only, Sk=0[Φ] = V Uk=0(Φ). We shall see in section 3.3

that this simple argument is valid in the absence of large amplitude inhomogeneous

instabilities only.

Let us consider as an example the differential equation

ẋk = f(xk), xΛ = xB, (17)

where f(x) is weakly varying analytic function given in its expanded form around the

base point x = 0,

ẋk =
∑

n

f (n)(0)

n!
xnk . (18)

The RG method allows us to perform the expansion at the current point,

xk−∆k = xk − ∆kf(xk) + O
(

∆k2
)

, (19)
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cf Eq. (8). The k-dependence of the right hand side represents the accumulation of

the information obtained during the integration. In a similar manner, the virtue of the

functional RG scheme (9) is the expansion of the path integral around around the current

action, instead of the Gaussian fixed point.

A more detailed picture of the RG flow can be obtained by inspecting the beta func-

tions. For this end we parametrize the potential as

Uk(φ) =
∑

n

gn(k)

n!
(φ− φ0)

n, (20)

and write the beta functions corresponding to φ0 = 〈φ〉 as

βn = k∂kgn(k) = k∂k∂
n
φUk(φ0) = ∂nφk∂kUk(φ0) = − h̄Ωdk

d

2(2π)d
∂nφ ln[k2 + ∂2

φUk(φ)] (21)

It is easy to see that βn is an n-th order polynomial

βn = − h̄Ωdk
d

2(2π)d
Pn[G3, · · · , Gn+2], (22)

of the expression Gn = gn/(k
2 + g2), eg

P2 = G4 −G2
3,

P3 = G5 − 3G3G4 + 2G3
3,

P4 = G6 − 4G3G5 + 12G2
3G4 − 3G2

4 − 6G4
3, (23)

P5 = G7 − 5G3G6 + 20G2
3G5 − 10G4G5 − 60G3

3G4 + 30G3G
2
4 + 24G5

3,

P6 = G8 − 6G3G7 + 30G2
3G6 − 5G5G6 − 120G3

3G5 + 120G3G4G5

−270G2
3G

2
4 − 10G2

5 − 10G4G6 + 360G4
3G4 + 30G3

4 − 120G6
3,

etc. The correspondence between these expressions and Feynman graphs contributing to

the beta functions in the traditional renormalization scheme is indicated in Fig. 3.

We shall need later the beta functions corresponding to coupling constants made

dimensionless by the running cut-off. By means of the parametrization φ = k(d−2)/2φ̃,

gn = k[gn]g̃n,

[gn] = d+ n

(

1 − d

2

)

, (24)

U(φ) = kdŨ(φ̃) one finds

β̃n(φ̃) = ˙̃gn(k) = k−[gn]βn(φ) − [gn]g̃n = − h̄Ωd

2(2π)d
Pn[G̃3, · · · , G̃n+2] − [gn]g̃n, (25)

where G̃n = g̃n/(1 + g̃2).

An instructive way to read Eqs. (20) and (14) is that the potential U(φ) is the

generator function for the coupling constants. The functional RG method is an econom-

ical book-keeping method for the computation of graphs and their symmetry factors by

keeping track of their generator function(al).
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(a)

(b)

(c)

Fig. 3 Graphs contributing to βn, (a): n = 2, (b): n = 3 and (c): n = 4.

Fig. 4 A two-loop contribution to g2.

The higher loop contributions to the running coupling constants are generated by the

integration of the differential equations k∂kgn = βn. The us consider the two-loop graph

depicted in Fig. 4 and expand the subgraph in the square in the momenta of its external

legs. The zeroth order contributions is the last graph of Fig. 3b. By going higher order

in the gradient expansion one can, in principle, generate the full momentum dependence

of the subgraph. In general, the n-th loop contributions appear in the integration after

n step k → k + ∆k and all loops are resummed in the limit ∆k → 0.

2.1.3 Gradient expansion

The natural expansion for the long distance properties of systems with homogeneous

ground state is the expansion in the inverse characteristic length of the fluctuations, in

the gradient operator acting on the field variable.

Functional derivatives of local functionals: We consider the following generalization

of the O (∂2) ansatz (12),

S[φ] =
∫

x

[
1

2
Z(φx)∂µφxK

−1(−2)∂µφx + U(φx)
]

. (26)

We shall use the notation Zx = Z(φx), Ux = U(φx) for the coefficient functions and

Z(n)
x = ∂nφZ(φx), U

(n)
x = ∂nφU(φx) for their derivatives. The first two functional derivatives
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of the action are

V
δS

δφp
=
∑

y

eipy
δS

δφy

=
∫

x,y
eipy

[

δx,yU
(1)
x +

1

2
δx,yZ

(1)
x ∂µφxK

−1∂µφx (27)

+
1

2
Zx
(

∂µδx,yK
−1∂µφx + ∂µφxK

−1∂µδx,y
)
]

,

and

V 2 δ2S

δφpδφq
=
∫

x,y,z
eipy+iqz

{

1

2
δx,yδx,zZ

(2)
x ∂µφxK

−1∂µφx

+
1

2
Zx
(

∂µδx,yK
−1∂µδx,z + ∂µδx,zK

−1∂µδx,y
)

+
1

2
Z(1)
x

[

δx,y
(

∂µδx,zK
−1∂µφx + ∂µφxK

−1∂µδx,z
)

+ δx,z
(

∂µδx,yK
−1∂µφx + ∂µφxK

−1∂µδx,y
)]

+δx,yδx,zU
(2)
x

}

. (28)

We split the field into a homogeneous background and fluctuations, φx = Φ+ ηx and find

up to O (η2),

V
δS

δφp
=
∫

x,y
eipy

{

δx,y

(

U (1) + U (2)ηx +
1

2
U (3)η2

x

)

+
1

2

[

δx,yZ
(1)∂µηxK

−1∂µηx

+(Z + Z(1)ηx)
(

∂µδx,yK
−1∂µηx + ∂µηxK

−1∂µδx,y
)
]}

=
∫

x,y
eipyδx,y

{(

U (1) + U (2)
∫

r
eir·xηr +

1

2
U (3)

∫

r,s
ei(r+s)·xηrηs

)

−1

2

[

Z(1)
∫

r,s
ei(r+s)·xr · sηrK−1

s ηs

+
(

Z + Z(1)
∫

r
eir·xηr

) ∫

s
p · seis·xηs

(

K−1
s +K−1

p

)
]}

= δp,0U
(1) + U (2)η−p +

1

2
p2Z(K−1

−p +K−1
p )η−p

+
1

2

∫

r,s
δp+r+s,0ηrηs

[

U (3) − Z(1)
(

r · sK−1
s + p · rK−1

r + p · sK−1
p

)]

(29)

and

V 2 δ2S

δφpδφq
=
∫

x,y,z
eipy+iqz

{

δx,yδx,z

(

U (2) + U (3)ηx +
1

2
U (4)η2

x

)

+
1

2

[

δx,yδx,zZ
(2)∂µηxK

−1∂µηx

+δx,y(Z
(1) + Z(2)ηx)

(

∂µδx,zK
−1∂µηx + ∂µηxK

−1∂µδx,z
)
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+δx,z(Z
(1) + Z(2)ηx)

(

∂µδx,yK
−1∂µηx + ∂µηxK

−1∂µδx,y
)

+
(

Z + Z(1)ηx +
1

2
Z(2)η2

x

)(

∂µδx,zK
−1∂µδx,y + ∂µδx,yK

−1∂µδx,z
)
]}

=
∫

x,y,z
eipy+iqzδx,yδx,z

{

−1

2

[

Z(2)
∫

r,s
r · seirxηrK−1

s eisxηs

+
(

Z(1) + Z(2)
∫

r
eirxηr

) ∫

s
eisxηs

(

q · s(K−1
s +K−1

q ) + p · s(K−1
s +K−1

p )
)

+p · q
(

Z + Z(1)
∫

r
eirxηr +

1

2
Z(2)

∫

r,s
ei(r+s)xηrηs

)

(K−1
p +K−1

q )

]

+
(

U (2) + U (3)
∫

r
eirxηr +

1

2
U (4)

∫

r,s
ei(r+s)xηrηs

)}

= δp+q,0

[

U (2) − 1

2
Zp · q(K−1

p +K−1
q )

]

+
∫

r
δp+q+r,0ηr

[

U (3) − 1

2
Z(1)

(

p · q(K−1
p +K−1

q )

+q · r(K−1
r +K−1

q ) + p · r(K−1
r +K−1

p )
)]

+
1

2

∫

r,s
δp+q+r+s,0ηrηs

[

U (4) − Z(2)
(

1

2
p · q(K−1

p +K−1
q ) + r · sK−1

s

+q · s(K−1
s +K−1

q ) + p · r(K−1
p +K−1

r )
)]

, (30)

where Z(n) = Z(n)(Φ), U (n) = U (n)(Φ) and Ks = K(s2).

WH equation in O (η2) : We set K = 1 in (26), use sharp cut-off, i.e. all momentum

integral is for k − ∆k < |p| < k,

V 2 δ2S

δφpδφq
= δp+q,0

(

U (2) − Zp · q
)

+
∫

r
δp+q+r,0ηr

[

U (3) − Z(1)(p · q + q · r + p · r)
]

+
1

2

∫

r,s
δp+q+r+s,0ηrηs

[

U (4) − Z(2)(p · q + r · s+ q · s+ p · s+ q · r + p · r)
]

= G−1
p,q + Ap,q +Bp,q, (31)

with

G−1
p,q = δp+q,0

[

U (2) +
1

2
Z(p2 + q2)

]

,

Ap,q =
∫

r
δp+q+r,0ηr

[

U (3) +
1

2
Z(1)(p2 + q2 + r2)

]

,

Bp,q =
1

2

∫

r,s
δp+q+r+s,0ηrηs

[

U (4) +
1

2
Z(2)(p2 + q2 + r2 + s2)

]

. (32)

As emphasised above, the logarithmic function on the right hand side of the WH

equation is computed within the space of field configurations whose Fourier transform is

non-vanishing for k − ∆k < |p| < k only. In order to keep this constrain in an explicit

manner we introduce the projection operator P corresponding to this space and write

the rest of the O (η2) evolution equation as

∂kS[φ] = − h̄

2∆k
tr log[G−1 + A +B]
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= − h̄

2∆k
trP logG−1 − h̄

2∆k
tr[PG(A+B)] +

h̄

4∆k
tr[PGAPGA]. (33)

Since the propagator does not lead out from the function space, [P, G] = 0, it is sufficient

to make the replacement G → PG on the right hand side of the evolution equation.

The term O (η) drops owing to the vanishing of the homogeneous component of the

fluctuation, ηp=0 = 0 and we find

1

2

∫

r
η−rηr

[

Żr2 + U̇ (2)
]

+ V U̇ = − h̄kd

2(2π)d

∫

de

{

V log[Zk2 + U (2)]

−
∫

r
η−rηrPr−ek,ek−r

[

U (3) + 1
2
Z(1)(k2 + (ek − r)2 + r2)

]2

2(Zk2 + U (2))(Z(ek − r)2 + U (2))

+
∫

r
η−rηr

U (4) + Z(2)(k2 + r2)

2(Zk2 + U (2))

}

, (34)

including an integration over the direction of k, the unit vector e.

The identification of the terms O (η0r0) results the equations

U̇ = − h̄kdΩd

2(2π)d
log[Zk2 + U (2)], (35)

c.f. Eq. (14). The terms O (η2r2) give

Ż
∫

r
η−rηrr

2 = − h̄kd

2(2π)d

∫

r

η−rηr
Zk2 + U (2)

∫

de

{

Z(2)r2

−Pr−ek,ek−r
[

2r2Z(1)U
(3) + Z(1)k2

Zk2 + U (2)
− Zr2 (U (3) + Z(1)k2)2

(Zk2 + U (2))2

+k2(er)2

(

Z(1)2

Zk2 + U (2)
− ZZ(1) U

(3) + Z(1)k2

(Zk2 + U (2))2

)]}

. (36)

Finally, in O (η2r0) we find

U̇ (2)
∫

r
η−rηr = − h̄kd

2(2π)d

∫

r

η−rηr
Zk2 + U (2)

∫

de
[

Z(2)k2

+U (4) −Pr−ek,ek−r
(Z(1)k2 + U (3))2

Zk2 + U (2)

]

. (37)

Let us make the replacement Pr−k,k−r → 1 + [Pr−k,k−r − 1] in Eqs. (35)-(37) and call

the contributions corresponding to 1 and Pk−r,k−r− 1 regular and irregular, respectively.

The regular contribution can be obtained from the one-loop graphs. This has already

been seen for Eq. (35) and the regular part of Eq. (37) is just the second derivative of

Eq. (35).

But there are problems with the irregular contributions which represent the cut-off

in the multi-loop integrals. One obvious problem is the inconsistency between Eqs. (35)

and (37). Another problem is that the irregular contributions include a truncated r-

integration and as a result the left and right hand sides of the equations have different
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η-dependence. This could be avoided by imposing r << ∆k for the momentum of the

fluctuations. But the price is unacceptable high since it would indicate that the radius

of convergence for the gradient expansion is smaller then the infinitesimal ∆k.

Another problem the projection operator leads to is non-locality. It is known that

the bare action is non-local at the scale of the U.V. cut-off, i.e. it contains higher order

derivatives up to a finite order. In fact, the gradient ∂n/∂xµn represents couplings up to n

lattice spacing distances when lattice regularization is used. But terms in the action which

are non-polynomial in the gradient induce correlations at finite, i.e. cut-off independent

distances and are not acceptable. Returning to the gradient expansion we note that the

operator Pr−k,k−r restricts the integration domain for r in such a non-isotropical manner

that not only r2 but |r| appears, too. This latter corresponds to the non-local operator√
2 in the gradient expansion.

This problem, inherent in the sharp cut-off procedure in the momentum space is

rather general. The one-loop correction for the two-particle scattering amplitude in the

φ4 model, represented by the fourth graph in Fig. 3c has a non-local contribution when

the momenta in both internal lines are properly restricted by the U.V. cut-off. Such non-

local effects, disregarded in the usual textbooks, might well be negligible in a renormalized

theory because they are represented by non-renormalizable, irrelevant operators such as

φ3
√

2φ. Therefore one hopes that their effects become weak when the cut-off is removed.

The more careful analysis is rather involved since the details of the cut-off procedure

within the momentum regime (1 − ǫ)k < p < (1 + ǫ)k influences the dynamics on the

distance scale h̄/(2ǫk) which is a quantity of the form 0 · ∞.

But it is not so easy to dispel the doubts. First, the irrelevance and unimportance of a

coupling constant are quite different concepts. An irrelevant coupling constant approaches

its I.R. fixed point value as we move in the I.R. direction. But its value at the fixed point

may be strong, indicating that the coupling constant in question is important. It is the

scale dependence only what becomes unimportant for an irrelevant coupling constant and

not its presence. The higher order vertices induced at low energies in a strongly coupled

self interacting scalar field theory in d < 4 may serve as an example of this difference.

Second, the global view of the renormalization group, outlined in Section 3.2 suggest that

a coupling constant which is irrelevant at the U.V. fixed point does not necessarily remain

so at around the I.R. fixed point. Finally, this problem is obviously present in effective

theories where the cut-off reaches physical scales.

2.2 Resumming the perturbation expansion

The basic idea leading to the WH equation is the successive elimination of the degrees

of freedom. This procedure produces the blocked action, the integrand of the functional

integral of the blocked theory. This integrand must be well defined, ie each mode must

either be left intact or be completely eliminated during the blocking. This is the positive

side of the sharp cut-off in momentum space. The negative side is that it generates non-

local interactions and spoils the gradient expansion. The simplest cure, to smear out the
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regulator and to use smooth cut-off procedure, is not a valid alternative. This is because

the blocking based on smooth cut-off suppresses the modes partially and the integrand for

the functional integral of the blocked theory is ill defined. Despite this general sounding

argument one can proceed and generalize the successive elimination process for smooth

cut-off in a rather surprising manner.

2.2.1 Polchinski equation

Let us start with the partition function

Zk =
∫

D[Φ]e−
1
2h̄

ΦG−1
k

Φ− 1
h̄
SI

k
[Φ], (38)

where the interaction functional SIk [Φ] corresponds to the U.V. cut-off k. We split the

propagator and the field variable into IR and U.V. components,

Gk = Gk−∆k + G̃k, Φ = φ+ φ̃, (39)

with the intention that the fields φ and φ̃ should propagate with Gk−∆k and G̃k, respec-

tively. In other words, the kinetic energy contribution to the action is supposed to be of

the form (φG−1
k−∆kφ+ 1

2
φ̃G̃−1

k φ̃)/2 when written in terms of φ and φ̃.

The introduction of the fields φ and φ̃ separated by a smooth cut-off makes both

φp and φ̃p non-vanishing and appears as a double counting of the degrees of freedom.

In order to ensure the proper integration measure we introduce a dummy field, Φ̃, in

such a manner that a suitable, momentum dependent linear combination of φp and φ̃p
reproduces Φp and Φ̃p,

(

Φ

Φ̃

)

=

(

A1,1(2) A1,2(2)

A2,1(2) A2,2(2)

)(

φ

φ̃

)

(40)

and decouple Φ̃,
1

2
φG−1

k−∆kφ+
1

2
φ̃G̃−1

k φ̃ =
1

2
ΦG−1

k Φ +
1

2
Φ̃G̃−1

D Φ̃, (41)

with a freely chosen dummy propagator G̃D. Owing to the second equation in (39)

A1,1 = A1,2 = 1. The condition (41) gives
(

G−1
k−∆k 0

0 G̃−1
k

)

=

(

1 A2,1(2)

1 A2,2(2)

)(

G−1
k 0

0 G̃−1
D

)(

1 1

A2,1(2) A2,2(2)

)

, (42)

whose solution is A2,1(2) =
√

G̃DG̃k/Gk−∆kGk, A2,2(2) =
√

G̃DGk−∆k/G̃kGk. The trans-

formation (40) is non-singular so long as G̃k 6= Gk−∆k, the propagations of φ and φ̃ are

distinguishable.

We are finally in the position to describe the blocking procedure which consists of the

following steps:

(1) Redouble the number of degrees of freedom, Φ → (Φ, Φ̃).

(2) Rotate the new, dummy degrees of freedom into the dynamics in such manner that

the rotated fields split the original field variable and follow the prescribed propaga-

tion.
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(3) Integrate out φ̃.

In order to complete step 3. we insert a field independent constant into the partition

function,

Zk =
∫

D[Φ]D[Φ̃]e−
1
2h̄

Φ̃G̃−1
D

Φ̃− 1
2h̄

ΦG−1
k

Φ− 1
h̄
SI

k
[Φ]. (43)

The redistribution of the degrees of freedom by the inverse of the transformation (40)

yields

Zk =
∫

D[φ]D[φ̃]e−
1
2h̄
φG−1

k−∆k
φ− 1

2h̄
φ̃G̃−1

k
φ̃− 1

h̄
SI

k
[φ+φ̃], (44)

up to a constant. This motivates the introduction of the blocked action Sk−∆k[φ] defined

as

e−Sk−∆k[φ] =
∫

D[φ̃]e−
1
2h̄
φ̃G̃−1

k
φ̃− 1

h̄
SI

k
[φ+φ̃]. (45)

The higher loop corrections were suppressed in the WH equation by restricting the

functional space of the blocking, the volume of the loop integration in momentum space.

But there is another way to suppress the radiative corrections, to decrease the propagator.

Such a suppression method is better suited for smooth cut-off where the U.V. field can not

be constrained into a restricted, ’small’ functional space. This strategy is implemented

by requiring that in the so far arbitrary split (39) G̃k(p) = O (∆k). The obvious choice

is

G̃k(p) = ∆k∂kGk(p). (46)

By assuming the convergence of the perturbation expansion we expand the action in φ̃

and perform the integration over φ̃. Since the new small parameter is the propagator we

retain graphs where the propagator appears in a minimal number. By assuming that the

saddle point is at most O (∆k) we can expand the action in φ̃,

e−
1
h̄
SI

k−∆k
[φ] =

∫

D[φ̃]e−
1
2h̄
φ̃G̃−1

k
φ̃− 1

h̄
SI

k
[φ]− 1

h̄
φ̃·

δSI
k
[φ]

δφ
− 1

2h̄
φ̃·

δ2SI
k
[φ]

δφδφ
·φ̃+O(φ̃3)

= e
− 1

h̄
SI

k
[φ]+ 1

2h̄

δSI
k
[φ]

δφ
·

(

G̃−1
k

+
δ2SI

k
[φ]

δφδφ

)
−1

·
δSI

k
[φ]

δφ
− 1

2
tr log

(

G̃−1
k

+
δ2SI

k
[φ]

δφδφ

)

+O(∆k2)

= e
− 1

h̄
SI

k
[φ]+∆k

h̄

[

1
2

δSI
k
[φ]

δφ
·∂kGk·

δSI
k
[φ]

δφ
− h̄

2
tr

(

∂kGk

δ2SI
k
[φ]

δφδφ

)]

+O(∆k2)

=

[

1 − h̄∆k

2

δ

δφ
· ∂kGk ·

δ

δφ

]

e−
1
h̄
SI

k
[φ] + O

(

∆k2
)

. (47)

The third equation was obtained by expanding the logarithmic function and gives the

differential equation [9], [10]

∂kS
I
k [φ] =

1

2

δSIk [φ]

δφ
· ∂kGk ·

δSIk [φ]

δφ
− h̄

2
tr

[

∂kGk
δ2SIk [φ]

δφδφ

]

. (48)

The fourth line leads to a linear equation,

k∂ke
− 1

h̄
SI

k
[φ] = h̄Be− 1

h̄
SI

k
[φ], B =

1

2

δ

δφ
· k∂kGk ·

δ

δφ
. (49)

It is instructive to notice the similarities and differences with the WH equation. Eq.

(45) looks as the starting point for the derivation of the WH equation and could have



J. Polonyi / Central European Journal of Physics 1 (2003) 1–71 17

been obtained in a trivial manner for sharp cut-off. The crux of the argument leading to

this relation is that this simple-looking equation is actually valid for smooth cut-off. But

in a surprising manner it is just the sharp cut-off limit when the rest of the derivation

of Polchinksi equation is invalid. This is because G̃k as given in (46) is ∆kO (∆k−1) =

O (∆k0).

Eq. (48) is a leading order equation in the perturbation rather than the loop ex-

pansion. It is formally similar to the WH equation, (10) when only the leading order is

retained in the expansion (11) which corresponds to keeping graphs with a single vertex

only in Fig. 1(b) and using the dashed lines to denote the propagation of φ̃. Notice that

even if the higher order contributions of the perturbation expansion are suppressed in

the limit ∆k → 0, the convergence of the perturbation expansion was assumed.

The difference between WH equation and (48) is that the tree-level first term on the

right hand side is always non-vanishing in Eq. (48), contrary to the case of the WH

equation. It is easier to understand the reason of the non-trivial saddle point when the

blocking (6) is considered in the presence of the source term. The source can be omitted

and the cut-off independence of a single quantity, the partition function can be considered

as the basic equation when the source has vanishing component in the functional subspace

to integrate over in the blocking. In case of a smooth cut-off the background field has

arbitrary momentum component and we can not really omit the source. One ought to

follow the more cumbersome blocking which keeps the generator functional RG invariant.

When classical physics (action) is modified by changing the cut-off, the field induced by

the source changes, as well. This is the origin of the tree-level renormalization. But we

made a short-cut and omitted the source. The price is that the tree-level renormalization

can only be understood by letting the background field, φ vary freely.

The understanding how the φ-dependence may give rise the tree-level renormaliza-

tion in (47) is an interesting demonstration of the well know theorem stating that the

expansion in loops and in h̄ are equivalent. In fact, the first equation in (47) introduces

an effective theory for φ̃ and the first two terms in the exponent of the second line give

the effective action corresponding to a given background field φ in the classical approxi-

mation. In other words, the action with lowered cut-off which is supposed to reproduce

the action with the original cut-off for arbitrary configuration φ requires tree-level adjust-

ment. The second term in the exponent has two factors of h̄−1 coming from the ’source’

h̄−1δSIk [φ]/δφ of the field φ̃ and a factor of h̄ from the φ̃ propagator. The overall 1/h̄

disappears in the differential equation (48) which displays h̄ times the exponent. This is

the way the graphs of Fig. 1(b) appear on the O
(

h̄0
)

tree-level in Eq. (48). Another

reason is that they are graphs with no freely changing loop-momentum variable. One

can understand in a similar manner that both the tree- and the loop-level graphs appear

with a common factor of h̄ in Eq. (49).
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2.2.2 Gradient expansion

We shall use here the results obtained in section 2.1.3 with the ansatz

SI [φ] =
∫

x

[
1

2
(Z(φx) − 1)∂µφxK

−1(−2/k2)∂µφx + U(φx)
]

(50)

to derive the gradient expansion for Eq. (48). For the left hand side we find in the given

order of the gradient expansion

Ż

2

∫

p
η−pηp

p2

Kp
+
Z − 1

2

∫

p
η−pηpp

2K̇−1
p + V U̇ +

U̇ (2)

2

∫

p
η−pηp

≈ Ż

2

∫

p
η−pηp

p2

Kp
+ V U̇ +

U̇ (2)

2

∫

p
η−pηp. (51)

By means of the relation k∂kG = −2K ′
p/k

2 where K ′
p = dK(z)/dz, z = p2/k2 the right

hand side gives

−
∫

p

{

δp,0U
(1) + ηp

(

U (2) + (Z − 1) p2

Kp

)

+ 1
2

∫

r ηrηp−r

[

U (3) − Z(1)
(

r·(p−r)
Kp−r

− p·r
Kr

− p·(p−r)
Kp

)]
}

×K′

p

k2

{

δp,0U
(1) + η−p

(

U (2) + (Z − 1) p2

Kp

)

+ 1
2

∫

s η−p−sηs

[

U (3) − Z(1)
(

p·s
Kp

− (p+s)·s
Ks

− p·(p+s)
K−p−s

)]
}

+h̄
∫

p

K′

p

k2

{

V
(

U (2) + (Z − 1) p2

Kp

)

+ 1
2

∫

r η−rηr

[

U (4) + Z(2)
(

p2

Kp

+ r2

Kr

)]
}

≈ −V U (1)2 K′

0

k2 −
∫

r η−rηr

[

K′

0
+K′′

0
K0r2/(k2Kr)

k2

(

U (2) + (Z − 1) r2

Kr

)2

+
K′

0

k2 U (1)
(

U (3) + Z(1) r2

Kr

)]

+h̄
∫

p

K′

p

k2

{

V
(

U (2) + (Z − 1) p2

Kp

)

+ 1
2

∫

r η−rηr

[

U (4) + Z(2)
(

p2

Kp

+ r2

Kr

)]
}

(52)

This equation is consistent since the terms O (η2) are comparable thanks to the smooth-

ness of the cut-off. We compare the coefficients of the same η-dependent expressions and

find

k2U̇ = −U (1)2K ′
0 + h̄

∫

p
K ′
p

(

U (2) + (Z − 1)
p2

Kp

)

,

k2Ż = −4K ′
0U

(2)(Z − 1) − 2K ′
0U

(1)Z(1) − 2
K ′′

0K0

k2
U (2)2 + h̄Z(2)

∫

p
K ′
p, (53)

and

k2U̇ (2) = −2K ′
0U

(2)2 − 2K ′
0U

(1)U (3) + h̄
∫

p
K ′
p

(

U (4) + Z(2) p
2

Kp

)

(54)

We have two independent equations for two functions because the Eq. (54) follows from

the first equation of (53).

It is instructive to check the first equation in the local potential approximation Z = 1,

U̇ =
U (1)2

2

k∂kKp

p2
|p=0

− h̄U (2)

2

∫

p

k∂kKp

p2
. (55)
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The first term describes the tree-level adjustment of the bare action in keeping the physics

cut-off independent and some of the corresponding graphs are depicted in Fig. 1(a). The

present form, characteristic of the gradient expansion, is non-vanishing when the change

of the cut-off at p = k is felt at the base point of the gradient expansion, p = 0. The

second term is the leading order perturbative contribution to the WH equation (14) when

the mass term is treated perturbatively, as expected and the beta functions,

βn(φ) = − h̄U
(n+2)

2

∫

p

k∂kKp

p2
, (56)

for n > 2 correspond to the leading order first column in Eqs. (23) with g2 = 0. The

independent mode approximation reproduces the leading order renormalization of the

coupling constants and the numerical integration resums the perturbation expansion in

the approximation where the effective vertices are replaced by their values at p = 0. The

leading order perturbative contributions, retained in the RG equation are linear in the

coupling constants and the classical, non-linear terms drop out in the linearized evolution

around the Gaussian fixed point therefore the usual critical exponents are reproduced.

2.3 Composite operator renormalization

The renormalization of composite operators [11] seems to be a highly technical and subtle

issue, dealing with the removal of the U.V. divergences from Green functions where com-

posite operators are inserted. But it becomes more elementary and general [12] as soon

as we are ready to give up the perturbative approach and can reformulate the procedure

in a general, non-perturbative manner. In order to see this let us go back to the remark

made at Eq. (6). It is not enough to impose the RG invariance of the partition function

only since it yields a single equation for infinitely many coupling constants. Instead one

should require the RG invariance of the generator functional for Green functions because

any observable can be reconstructed from this functional. This turns out to be rather

cumbersome due to the source dependence generated for the blocked action [13]. We

took another direction by imposing the RG invariance of another functional, the blocked

action, cf Eqs. (7) and (45). Instead of this strategy we shall now use the matching of

observables computed at different values of the cut-off to rederive the RG equation. This

is a non-perturbative, blocking inspired generalization of the multiplicative RG schemes

mentioned in the Introduction in what the scale dependence of the observables is followed

instead of those of non-physical bare coupling constants.

We start with a toy model to demonstrate the natural relation between blocking and

composite operator renormalization and the field theoretical application follows next by

generalizing the source term in the generator functional. This term which usually involves

the elementary field only is extended here for any local operator with inhomogeneous

source and we consider it as part of the action which now contains inhomogeneous cou-

pling constants. Our main point is that the beta functions corresponding to this extended

action provide a bridge between the blocking and the composite operator renormalization.
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2.3.1 Toy model

Consider the two dimensional integral

Z =
∫

dxdye−S(x,y) (57)

over x and y which play the role of low- and high-frequency variables, respectively, where

the bare action is given by the expression

S(x, y) =
1

2
sxx

2 +
1

2
syy

2 +
∞∑

n=0

gn(x+ y)n (58)

in terms of bare coupling constants gn. We use h̄ = 1 in this section. The blocked action

is defined as

e−S(x) =
∫

dye−S(x,y). (59)

The elementary, bare operators are (x + y)n with n = 0, 1, 2, . . . and their expectation

values are
∫

dxdy(x+ y)ne−S(x,y)

∫

dxdye−S(x,y)
=

∫

dx∂S(x)
∂gn

e−S(x)

∫

dxe−S(x)
. (60)

The right hand side of this equation expresses the expectation value of the bare operator

in terms of an operator of the blocked, ’thinner’ system. The action S(x) can be expanded

in the terms of the operators xn,

S(x) =
1

2
sxx

2 +
∞∑

m=0

g′mx
m, (61)

giving rise the composite operators

{xn} =
∂S(x)

∂gn
=

∞∑

m=0

xmSm,n (62)

where

Sm,n =
∂g′m
∂gn

. (63)

We have chosen a basis for operators in the bare theory and searched for operators in

the blocked theory. The opposite question, the construction of the composite operators

[(x + y)n] of the bare theory which reproduce the expectation values of the blocked

operators gives
∫

dxdy[(x+ y)n]e−S(x,y)

∫

dxdye−S(x,y)
=

∫

dxxne−S(x)

∫

dxe−S(x)
, (64)

with

[(x+ y)n] =
∞∑

m=0

(x+ y)m(S−1)m,n. (65)

It is instructive to generalize the toy model for three variables,

S(x, y, z) =
1

2
sxx

2 +
1

2
syy

2 +
1

2
szz

2 +
∞∑

n=0

gn(x+ y + z)n, (66)
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with

e−S(x,y) =
∫

dze−S(x,y,z), e−S(x) =
∫

dye−S(x,y), (67)

where the operator mixing looks like

{xn}z =
∂S(x, y, z)

∂gn
= (x+ y + z)n,

{xn}y =
∂S(x, y)

∂gn
= −

∂
∂gn

∫

dze−S(x,y,z)

∫

dze−S(x,y,z)
,

{xn}x =
∂S(x)

∂gn
= −

∂
∂gn

∫

dydze−S(x,y,z)

∫

dydze−S(x,y,z)
. (68)

These relations yield

{xn}y =

∫

dz{xn}ze−S(x,y,z)

∫

dze−S(x,y,z)
, {xn}x =

∫

dy{xn}ye−S(x,y)

∫

dye−S(x,y)
, (69)

indicating that the evolution of the operators comes from the elimination of the field

variable in their definition. We can compute the expectation value of {xn} at any level,

∫

dxdydz{xn}ze−S(x,y,z)

∫

dxdydze−S(x,y,z)
=

∫

dxdy{xn}ye−S(x,y)

∫

dxdye−S(x,y)
=

∫

dx{xn}xe−S(x)

∫

dxe−S(x)
. (70)

The lesson of this toy model is twofold. First, one sees that the formal definition of the

renormalized operator at two different value of the cut-off differs because these operators

are supposed to reproduce the same averages by means of different number of degrees of

freedom. Second, it shows that the cut-off dependence of the renormalized operators can

be obtained in a natural and simple manner by considering the bare coupling constants

at one value of the cut-off as the functions of the coupling constants given at another

value of the cut-off.

2.3.2 Quantum Field Theory

We generalize the operator mixing of the toy model for the scalar field theory given by

the bare action

SΛ[φ] =
∫

x

∑

n

Gn,x(Λ)On(φx) =
∑

ñ

Gñ(Λ)Oñ(φx), (71)

where On(φx) represents a complete set of local operators (functions of φx and its space-

time derivatives) and Gn,x(Λ) denotes the coupling constant. We simplify the expressions

by introducing a single index ñ for the pair (n, x) labeling the basis elements for the local

operators and
∑

ñ =
∑

n

∫

x. The decomposition φx = φk,x + φ̃k,x of the scalar field into a

low- and high-frequency parts is carried out as in Eqs. (7) and (39).

The Kadanoff-Wilson blocking

e−Sk[φk] =
∫

D[φ̃k]e
−SΛ[φk+φ̃k] (72)
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for the action

Sk[φk] =
∑

ñ

Gñ(k)Oñ(φk) (73)

generates the RG flow

k∂kGñ(k) = βñ(k,G). (74)

The blocked operators are defined by

{Oñ(φk)}k =
δSk[φk]

δGñ(Λ)
=

∫

D[φ̃k]Oñ(φk + φ̃k)e
−SΛ[φk+φ̃k]

∫

D[φ̃k]e−SΛ[φk+φ̃k]
(75)

in agreement with Eq. (68). They satisfy the equation

∫

D[φk]
δSk [φk]
δGñ(Λ)

e−Sk[φk]

∫

D[φk]e−Sk[φk]
=

∫

D[φk]D[φ̃k]Oñ(φk + φ̃k)e
−SΛ[φk+φ̃k]

∫

D[φk]D[φ̃k]e−SΛ[φk+φ̃k]
, (76)

c.f. Eq. (70), showing that they are represented in the effective theory by the functional

derivative of the blocked action with respect to the microscopical coupling constants. The

form (73) of the action gives the operator mixing

{Oñ(φk)}k =
∑

m̃

δGm̃(k)

δGñ(Λ)

δSk[φk]

δGm̃(k)
=
∑

m̃

Om̃(φk)Sm̃ñ(k,Λ), (77)

in a manner similar to Eq. (69). We introduced here the sensitivity matrix

Sm̃,ñ(k,Λ) =
δGm̃(k)

δGñ(Λ)
. (78)

It is the measure of the sensitivity of an effective strength of interaction on the initial

condition of the RG trajectory, imposed in the U.V. domain, c.f. Eq. (153). The com-

posite operator {Oñ(φk)}k introduced in Eq. (77) replaces the bare operator {Oñ(φ)}Λ

in the Green functions of the effective theory for the I.R. modes φk.

The differential equation generating the operator mixing (77) is obtained in the fol-

lowing manner. The relation

Gñ(k − ∆k) = Gñ(k) −
∆k

k
βñ(k,G) (79)

is used to arrive at the sensitivity matrix,

Sm̃,ñ(k − ∆k,Λ) =
δGm̃(k − ∆k)

δGñ(Λ)
=
∑

ℓ̃

δGm̃(k − ∆k)

δGℓ̃(k)

δGℓ̃(k)

δGñ(Λ)

=
∑

ℓ̃

[

δm̃ℓ̃ −
∆k

k

δβm̃(k,G)

δGℓ̃(k)

]

Sℓ̃,ñ(k) (80)

and to find

k∂kSm̃,ñ(k,Λ) =
∑

ℓ̃

δβm̃(k,G)

δGℓ̃(k)
Sℓ̃,ñ(k,Λ). (81)
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The scale dependence of the operator mixing matrix is governed by

γñm̃(k) =
1

k

δβñ(k,G)

δGm̃(k)
. (82)

Summary: Eq. (74) represents the link between Kadanoff-Wilson blocking and com-

posite operator renormalization. On the one hand, βñ describes the evolution of the

action in the traditional blocking scheme, Eq. (72). On the other hand, interpreting the

coupling constants in the action as sources coupled to composite operators βñ determines

the mixing of composite operators in Eq. (82). Therefore all conepts and results of the

blocking, e.g. fixed point, universality, etc. has a counterpart in composite operator

renormalization.

2.3.3 Parallel transport

The operator mixing discussed above has a nice geometrical interpretation, a parallel

transport of operators along the RG trajectory [14] with the connection Γñ,m̃(k). The

independence of the expectation value from the cut-off,

∫

D[φk′]D[φ̃k′]Oñ(φk′ + φ̃k′)e
−Sk′ [φk′+φ̃k′ ]

∫

D[φk′]D[φ̃k′]e−Sk′ [φk′+φ̃k′ ]
=

∫

D[φk]D[φ̃k]Oñ(φk + φ̃k)e
−Sk[φk+φ̃k]

∫

D[φk]D[φ̃k]e−Sk[φk+φ̃k]
(83)

defines the parallel transport of composite operators. The linearity of the mixing (77)

assures that this parallel transport is indeed linear and can therefore be characterized by

a covariant derivative

DkOk = (∂k − Γ)Ok (84)

where Γm̃,ñ = (S−1 · γ · S)ñ,m̃ in such a manner that DkOk = 0 along the RG flow.

The dynamical origin of the connection comes from the fact that there are two different

sources the scale dependence of 〈Ok〉 comes from: from the explicit k-dependence of the

operator and from the implicit k-dependence due to the cut-off in the path integration.

The operator mixing is to balance them. In fact, the covariant derivative could have been

introduced by the relation

∂k〈Ok〉 = 〈DkOk〉, (85)

requiring that the operator mixing generated by the connection is to make up the implicit

k-dependence of the expectation value coming from the cut-off.

It is obvious that Γ is vanishing in the basis {Oñ}k,

∂k〈
∑

ñ

cñ(k){Oñ}k〉 =
∑

ñ

∂kcñ(k)〈{Oñ}k〉 = 〈∂k
∑

ñ

cñ(k){Oñ}k〉. (86)

The connection can in principle be found in any other basis by simple computation.

2.3.4 Asymptotical scaling

We linearize the beta-functions around a fixed point G∗
m̃,

βñ ≈
∑

m̃

Γ∗
ñm̃(Gm̃ −G∗

m̃), (87)
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and write the scaling coupling constant, the left eigenvectors of Γ

∑

m̃

cleftñ,m̃Γ∗
m̃,r̃ = αñc

left
ñ,r̃ , (88)

as

Gsc
ñ =

∑

m̃

cleftñ,m̃ (Gm̃ −G∗
m̃) . (89)

They display the scale dependence

Gsc
ñ ∼ kαñ . (90)

Furthermore let us fix the overall scale of the local operators. This can be done by

using the decomposition

O(φx) =
∑

n

bnOn(φx) (91)

where On(φ(x)) is the product of the terms ∂µ1 · · ·∂µℓ
φm(x) with coefficient 1. The norm

||O|| =
√
∑

n b
2
n is introduced with the notation

O =
O

||O|| , (92)

for the operators of unit norm. We shall use the convention that the coupling constants

Gñ(Λ) always multiply operators of unit norm in the action.

The scaling operators

Osc
ñ =

∑

m̃

cright
ñm̃ Om̃ (93)

are obtained by means of the right eigenvectors of Γ∗,

∑

m̃

Γ∗
r̃m̃c

right
m̃ñ = αñc

right
r̃ñ , (94)

and they satisfying the conditions of completeness cright · cleft = 1 and orthonormality

cleft · cright = 1. The coupling constants of the action

Sk =
∑

ñ

Gñ(k)O
sc
ñ (φk) (95)

obviously follow (90). The operator

O =
∑

ñ

bñ{Osc
ñ }k, (96)

written at scale k in this basis yields the parallel transport trajectory

{O}k′ =
∑

ñ

bñ{{Osc
ñ }k}k′ =

∑

ñ

bñ

(

k′

k

)αñ

{Osc
ñ }k (97)

in the vicinity of the fixed point.

The beta function introduced by Eqs. (72)-(74) agrees with the usual one. One finds

that only relevant operators have non-vanishing parallel transport flow. Universality
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manifests itself at a given scaling regime in the suppression of the parallel transported

irrelevant operators.

The blocked action Sk[φk,x, Gñ(k), Gñ(Λ)] possesses two interpretations:

• The value of the coupling constant at the running cut-off, Gñ(k), reflects the scale

dependence of the physical parameters.

• The dependence on the bare coupling constants, Gñ(Λ), the initial condition of the

RG flow provides us the generator functional for composite operators.

Finally, the composite operator renormalization represents an alternative way to arrive

at the RG equation. In fact, the beta functions arising from the blocking (72) are obtained

in this scheme by the parallel transport, the matching (76) of the expectation values.

2.3.5 Perturbative treatment

Let us finally compare the matching of the observables, described above with the tradi-

tional method of perturbative composite operator renormalization. The inversion of Eq.

(77) gives

[Oñ(φk + φ̃k)]k =
∑

m̃

Om̃(φk + φ̃k)(S
−1(k,Λ))m̃,ñ. (98)

It is not difficult to see that the operator [Oñ(φk + φ̃k)]k of the bare theory which cor-

responds to the operator {Oñ(φk)}k of the effective theory agrees with the result of the

usual composite operator renormalization. In fact, the bare action (71) can be split into

the sum of the renormalized part and the counterterms the framework of the renormalized

perturbation expansion, giving GñB = GñR + GñCT , Gñ(Λ) = GñB and Gñ(k) = GñR.

The counterterms are introduced just to render certain Green functions with composite

operator insertions cut-off independent [13]. The composite operator corresponding to

the renormalized (ie blocked) operator Oñ(φk) in this perturbative framework is

∑

m̃

Om̃(φk + φ̃k)
δGm̃B

δGñR
(99)

which agrees with (98).

It is worthwhile recalling that the parameters and operators of a bare theory corre-

spond to the cut-off scale in a natural manner. Therefore {Oñ(φk)}k represents the bare

operator [Oñ(φk + φ̃k)]k in the effective description at the scale k and reproduces the ob-

servational scale dependence by construction in a manner similar to the scale dependence

of the hadronic structure functions obtained in the framework of the composite operator

renormalization convey the same information [15].

2.4 Continuous evolution

The RG equations obtained so far deal with the evolution of the bare action during the

gradual lowering of the U.V. cut-off. There are two different reasons to look for alternative

schemes where the evolution of the Green functions rather than the bare action is followed.
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One reason is usefulness. In the traditional RG strategy followed so far the renor-

malized trajectories give the bare coupling constants as functions of the running cut-off.

Though one can extract number of useful information from the trajectories they remain

somehow qualitative because the bare parameters of the theory with the running cut-off

are not physical quantities. Though this remark does not apply to the multiplicative RG

scheme where the effective parameters are constructed by means of Green functions this

scheme is seriously limited as mentioned in the Introduction. Returning to blocking, one

can say at most that the difference between bare parameters and physical quantities arises

due to the fluctuations in the path integral and this latter decreases with the number of

degrees of freedom as we approach the IR end point of the trajectories. Therefore it is

the blocked action with very low cut-off only which is supposed to be directly related to

physical quantities (in the absence of IR instability).

Another more formal point of view is to construct a strictly non-perturbative scheme.

The RG equations (10), (48) represent the complete resummation of the perturbation

expansion but they are not really non-perturbative equations. This situation is remi-

niscent of the Schwinger-Dyson equations. They were first obtained by resumming the

perturbation expansion and only later by a genuine non-perturbative method, by the

infinitesimal shift of the integral variable in the path integral formalism. The fact that

the naive result derived by assuming the convergence of the perturbation expansion is

correct is presumably related to the unique analytic continuation of the Green functions

in the coupling constants. Can we find in a similar manner the truly non-perturbative

RG equations? If possible, it will come by a different route: by relating two path inte-

gral averages instead of computing them by brute force. The quantities in question are

one-particle irreducible (1PI) amplitudes and we shall give up to follow the evolution of

the bare coupling constants, the parameters in the path integral. This will allows us to

avoid any reference to the perturbation expansion. It remains to be seen if (10) and (48)

can be derived in a similar manner or they remain valid for strongly coupled models.

We begin this program by writing the generator functional for the connected Green

functions in the form

e
1
h̄
Wk[j] =

∫

D[φ]e−
1
h̄
(SB [φ]+Ck[φ]−j·φ), (100)

where the term Ck[φ] is introduced to suppress fluctuations. What we require is that

(i) for k = ∞ the fluctuations be suppressed, C∞[φ] = ∞, (ii) the original generator

functional be recovered for k = 0, C0[φ] = 0 and (iii) the fluctuations are suppressed only,

ie Ck[φ
′] = 0 for some configurations close to the vacuum expectation value, φ′ ≈ 〈φ〉.

The simplest choice for models without condensate is a quadratic functional,

Ck[φ] =
1

2
φ · Ck · φ (101)

but in certain cases higher order terms in the field variables are necessary in the suppres-

sion. We distinguish two kinds of suppression. The length scale of the modes ’released’
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ℓ(k) is well defined when

M2
k(p) =

δ2Ck
δφ−pδφp |φ=〈φ〉

{

>> 1 |p| < 1/ℓ(k),

≈ 0 |p| > 1/ℓ(k).
(102)

The evolution generated by such suppressions shows the scale dependence in the spirit

of the Kadanoff-Wilson blocking, the contribution of modes with a given length scale to

the dynamics. Examples are,

Ck(p) =







ap2 f(p)
1−f(p)

[16]

a
(
k2

p2

)b
[17]

a(k2 − p2)Θ(k2 − p2) [18]

(103)

where f(p) = e−b(p
2/k2)c

and a, b, c > 0. Another kind of suppression for which M2
k(p)

shows no clear structure will be considered in section 2.5 below.

The evolution equation for W [j] is easy to obtain,

∂kWk[j] = −e− 1
h̄
Wk[j]

∫

D[φ]∂kCk[φ]e−
1
h̄
(Ck [φ]+SB[φ]−j·φ)

= −e− 1
h̄
Wk[j]∂kCk

[

h̄
δ

δj

]

e
1
h̄
Wk[j]. (104)

This is already a closed functional differential equation but of little use. The reason is

that it is difficult to truncate W [j] being a highly non-local functional. In order to arrive

at a more local functional we shall make a Legendre transformation and introduce the

effective action Γk[φ] as

Γk[φ] +Wk[j] = j · φ, φ =
δW [j]

δj
, (105)

with

∂kΓk[φ] = −∂kWk[j] −
δW [j]

δj
∂kj + ∂kjφ = −∂kWk[j]. (106)

It is advantageous to separate the auxiliary suppression term Ck[φ] off the effective action

by the replacement Γ[φ] → Γ[φ] + Ck[φ] resulting in

∂kΓk[φ] = e−
1
h̄
Wk[j]∂kCk

[

h̄
δ

δj

]

e
1
h̄
Wk[j] − ∂kCk[φ]. (107)

This relation takes a particularly simple form for the quadratic suppressions (101). Since

the quadratic part of the effective action is the inverse connected propagator we find [16],

[10], [19], [20], [21],

∂kΓk[φ] =
h̄

2
tr [∂kCk · 〈φφ〉conn] =

h̄

2
tr



∂kCk ·
1

Ck + δ2Γk

δφδφ



 . (108)

Two remarks are in order in comparing the evolution equation obtained here with the

pervious RG equations. First, the Kadanoff-Wilson blocking is constructed to preserve
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the generator functional W [j] for the thinner system and this is realized by eliminating

modes at the U.V. side, by changing Sk[φ]. One is not aiming at keeping anything fixed in

the continuous evolution scheme. The 1PI generator functional does depend on k which

appears as the lowest momentum of modes considered in the theory whose effective action

is Γk[φ]. The second remark is that the right hand side is proportional to h̄. But the

apparent absence of the mixing of tree and loop-levels is misleading since the propagator

may be the sum of O
(

h̄0
)

tree-level and O (h̄) fluctuation contributions. The explicit

tree-level term is missing because the modification of the bare action was carried out

in the part O (φ2) and this correction to the free propagator was removed by the step

Γ[φ] → Γ[φ]+Ck[φ], the substraction of the tree-level suppression term from the effective

action.

It is illuminating to compare the evolution and the Schwinger-Dyson (SD) equations.

Though the formal aspects appear similar the content of the equations differs. A similarity

appearing immediately is that both set of equations determine the Green functions in a

hierarchical manner. The derivation of the equations shows some similarity, as well. In

fact, the crucial step in the derivation of the evolution equation is the first equation

in (104). This step, the expression of the derivative of the functional integral formally,

without its actual evaluation is the hallmark of the non-perturbative demonstration of the

SD equations. Both the SD and the evolution equations are genuinely non-perturbative

because we actually do not evaluate the functional integral, instead we relate to another

one by bringing a derivative inside the path integral. In both schemes on compares two

functional integrals which differ slightly, either in the infinitesimal shift of the integral

variables or in the infinitesimal change in the action. Let us write the first equation in

(104) for finite ∆k,

∫

D[φ]
(

e−
1
h̄
(Ck[φ]+SB[φ]−j·φ) − e−

1
h̄
(Ck−∆k [φ]+SB[φ]−j·φ)

)

=
1

h̄

∫

D[φ]
(

∆k∂kCk[φ]e−
1
h̄
Ck[φ] + O

(

(∆k)2
))

e−
1
h̄
(SB [φ]−j·φ). (109)

The small parameter ∆k is used to suppress the insertion of more field variables in the

evolution equation, to cut off the higher order Green functions from the evolution, the

strategy common with the non-perturbative proof of the SD equation. The higher order

contributions in ∆k bring in higher order Green functions and we suppress them by the

smallness of the step in ’turning on’ the fluctuations. This is how the RG idea, the

replacement of the higher loops by running effective coupling constants and the dealing

with small number of modes at each step, is realized in the evolution equation scheme.

The obvious difference between the evolution and the SD equations is that the latter

express the invariance of the functional integral in a manner similar to the RG equations

but the former is simply an expression of the derivative of the functional integral with

respect to a parameter. The similarity of the evolution equation and the RG strategy

leads to another difference. The subsequent elimination of modes and taking into account

their dynamics by the introduction/modification of effective vertices generates a ’univer-

sal’ evolution equations which does not depend on the theory in question. In fact, the
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evolution equation (108) and the functional RG equations Eqs. (6), (45) do not contain

any reference to the model considered. The effective or the bare action of the model ap-

pear in the initial condition only. The SD equation is based on a careful application of

the equation of motion within the expectation values and therefore contains the action

of the model in an obvious manner.

The evolution equation method seems to be better suited to numerical approximations

then the SD equations. This is because the ’dressing’, the summing up the interactions is

achieved by integrating out differential equations rather then coupling the Green functions

in the SD hierarchy, a numerical problem we can control easier.

2.5 Blocking in the internal space

We present now a generalization the RG method. The traditional RG strategy is aiming

at the scale dependence of observables and consequently follows the cut-off dependence

in the theories. The results are obtained by the successive modification of the cut-off and

the accumulation of the resulting effects. One can generalize this method by replacing

the cut-off by any continuous parameters of the theory on which the observables depend

upon in a differentiable manner. Such a generalization replaces the RG equation by an

evolution equation corresponding to the parameter or coupling constant in question.

One gains and looses in the same time during such a generalization. One looses

intuition of and insight into the dynamics since the trajectories generated by the evolution

equation have no relation to scale dependence. To make things even more complicated the

trajectories do not correspond anymore to a fixed physical content, instead they trace the

dependence of the dynamics in the parameter considered. But we gain in flexibility. In

fact, the parameter we select to evolve can be the Plank constant or a coupling constant

and the integration of the resulting evolution resums the semiclassical or the perturbation

expansion. We may apply this method in models with non-trivial saddle point structure

or where the cut-off would break important symmetries, e.g. in gauge theories.

A more technical aspect of this generalization touches the U.V. divergences in the

theory. The traditional RG procedure is based on the tacit assumption that the U.V.

divergences are properly regulated by the blocking, the moving cut-off. This seems to be

a natural requirement if the RG flow is interpreted as scale dependence. In fact, an U.V.

divergence left-over by the blocking would indicate the importance of the processes at

the regulator and would lead to the appearance of a second scale. In the generalization

of the RG procedure we introduce below there may not be a well defined scale related to

the evolution and we have to regulate the U.V. divergences.

There are two different kind of physical spaces in Field Theory. The space-time or

the momentum-energy space where the ’events’ are taking place will be called external

space. The ’events’ are characterized by further quantities, the field amplitudes. The

space where the field amplitudes belong will be called internal space. Therefore the field

configuration φx realizes a map φ : external space → internal space. The traditional

Kadanoff-Wilson blocking orders the degrees of freedom to be eliminated according to
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their scale in the external space. We may realize a similar scheme by ordering the modes

according to their scale in the internal space, their amplitude [22]. We present two

different implementations of this idea, one for Wilsonian and another for the effective

action.

2.5.1 Wilsonian action

We shall use the flexibility of the method of deriving the Polchinksi equation in section

2.2 to separate off and eliminate the fluctuation modes with the largest amplitude in the

path integral. Since the fluctuation amplitude is controlled by the mass this leads to the

description of the dynamics by highly massive modes, small fluctuations at the final point

of the evolution.

Let us consider the model (38) where the role of the parameter k is played by the

mass M and G−1
M2 = p2 +M2. We shall follow the evolution from M2 = 0 to M2 >> Λ2

where Λ is the U.V. cut-off. The decomposition

GM2 = GM2+∆M2 + G̃M2 , Φ = φ+ φ̃, (110)

will be used with

1

2
φ
(

M2 + ∆M2 − 2

)

φ+
1

2
φ̃

(M2 − 2)2

∆M2
φ̃ =

1

2
Φ
(

M2 − 2

)

Φ +
1

2
Φ̃G̃−1

D Φ̃. (111)

We replace the degrees of freedom Φ̃ by the field φ̃ with infinitesimal fluctuations. After

eliminating φ̃ the remaining field φ has smaller fluctuations than Φ. We use the ansatz

SIM [φ] =
∫

x

[
1

2
(ZM(φx) − 1)∂µφx∂µφx + UM (φx)

]

(112)

where the U.V. regulator with smooth cut-off is not shown explicitly. We follow the steps

outlined in section 2.2.2 which gives rise the evolution equation with left hand side

∂M2

{
1

2

∫

p
η−pηp

[

(Z − 1)p2 + U (2)
]

+ V U
}

. (113)

The right hand side reads as

−1

2

∫

p

{

δp,0U
(1) + ηp

[

(Z − 1)p2 + U (2)
]

+
1

2

∫

r
ηrηp−r

[

U (3) − Z(1)
(

r · p− r2 + p2
)]
}

× 1

(p2 +M2)2

×
{

δp,0U
(1) + η−p

[

(Z − 1)p2 + U (2)
]

+
1

2

∫

s
η−p−sηs

[

U (3) + Z(1)
(

s2 + p · s+ p2
)]
}

+
h̄

2

∫

p

1

(p2 +M2)2

{

V
[

(Z − 1)p2 + U (2)
]

+
1

2

∫

r
η−rηr

[

U (4) + Z(2)(p2 + r2)
]
}

≈ −V U (1)2 1

2M4
− 1

2

∫

r
η−rηr







[

(Z − 1)r2 + U (2)
]2

(r2 +M2)2
+

1

M4
U (1)(U (3) + Z(1)r2)







+
h̄

2

∫

p

1

(p2 +M2)2

{

V
[

(Z − 1)p2 + U (2)
]

+
1

2

∫

r
η−rηr

[

U (4) + Z(2)(p2 + r2)
]
}

(114)



J. Polonyi / Central European Journal of Physics 1 (2003) 1–71 31

The system of evolution equation projected onto the different η-dependent terms is

2M4∂M2U = −U (1)2 + h̄M4
∫

p

(Z − 1)p2 + U (2)

(p2 +M2)2

2M4∂M2Z = −4U (2)(Z − 1) + 4
U (2)2

M2
− 2U (1)Z(1) + h̄M4Z(2)

∫

p

1

(p2 +M2)2

2M4∂M2U (2) = −U (2)2 − U (1)U (3) + h̄M4
∫

p

Z(2)p2 + U (4)

(p2 +M2)2
. (115)

The O
(

h̄0
)

terms on the right hand side are to keep the tree-level observables M-invariant

within the gradient expansion ansatz. As far as the loop corrections are concerned, the

beta functions

βn = M∂Mgn = h̄M2U (n+2)
∫

p

1

(p2 +M2)2
, (116)

obtained from the first equation with Z = 1 agree with the leading order contribution to

the one-loop renormalized potential,

U1−loop
M = UM +

h̄

2

∫

p
ln[p2 +M2 + U

(2)
M ], (117)

except their sign. This is because we intend to keep the partition function unchanged as

opposed to Eq. (117) where the mass is evolving together with the dynamics.

2.5.2 Effective action

Let us consider for the sake of simplicity again the scalar model given by the bare action

SB =
∫

x

[

1

2
(∂µφx)

2 +
m2
B

2
φ2
x + UB(φx)

]

(118)

and the suppression with no structure in the external space [22],

Ck(p) =
M2

2
(119)

which acts as a ’smooth cut-off’ for the amplitude of the fluctuations. The corresponding

evolution equation is

∂M2ΓM [φ] =
h̄

2
tr

[

M2 +
δ2ΓM [φ]

δφδφ

]−1

. (120)

The effective action of the theory is obtained by integrating this equation from the initial

condition ΓM0 [φ] = SB[φ] imposed at M2 = M2
0 >> Λ2 >> m2

B to M = 0.

Let us consider how this scheme looks like for the ansatz

ΓM [φ] =
∫

x

[
1

2
ZM(φx)(∂µφx)

2 + UM(φx)
]

. (121)
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One finds

∂M2U =
h̄

2

∫

p

1

Zp2 +M2 + U (2)

∂M2Z =
h̄

2

∫

p

[

2Z(1)

p2

d
Z(1) + 2

(

Z(1)p2 + U (3)
)

(Zp2 +M2 + U (2))
3 − Z(2)

(Zp2 +M2 + U (2))
2

−2Z

(

Z(1)p2 + U (3)
)2

(Zp2 +M2 + U (2))
4 − 8p2

d
ZZ(1)

(

Z(1)p2 + U (3)
)

(Zp2 +M2 + U (2))
4

+
8p2

d
Z2

(

Z(1)p2 + U (3)
)2

(Zp2 +M2 + U (2))
5

]

. (122)

The asymptotic form of the first equation for M2 >> U (2) in the local potential approx-

imation,

M∂MUM ≈ −U (2)
M

∫

p

M2

(p2 +M2)2
(123)

up to field independent constant and it agrees with asymptotic form of the first equation

in (115) except the sign. The integrand in (123) corresponds to transformation rule

(4) of the propagator under the infinitesimal change of the mass for the first, leading

order graphs in Figs. 3. The numerical integration resums the higher orders in the

loop expansion. In short, we see the Callan-Symanzik scheme at work in the functional

formalism.

The suppression (119) freezes out modes with momentum p if p2 < M2 and generates

a characteristic scale pcr where (Zp2 +M2 + U (2))/(Zp2 +U (2)) deviates from 1. So long

this scale is far from the intrinsic scales of the model, M2 >> U (2) in the U.V. scaling

regime, such an internal space blocking generates the external scale pcr ≈M/
√
Z. In other

words, the universal part of the beta functions obtained in the U.V. regime by means

of the Callan-Symanzik scheme should agree with the same part of the beta functions

coming from other schemes. This agreement has been observed in the framework of the

scalar model [23]. We shall check this quickly in the local potential approximation. By

comparing Eq. (123) with the asymptotic form of the WH equation (14),

k∂kUk = − h̄U
(2)
k Ωdk

d−2

2(2π)d
, (124)

we find
dk2

dM2
= 2

∫ Λ/k

0

yd−1dy

(y2 +M2/k2)2
. (125)

Below the upper critical dimension, d < 4, the right hand side is finite and the external

(WH) and the internal (CS) scales are proportional. At the critical dimension the M

dependence of the right hand side is through the proportionality factor ln(1 + Λ2/M2).

The two scales become approximately proportional only for much higher value of the

cut-off Λ, since the RG flow spends more ’time’ close to the non-universal short distance

regime due to the tree-level marginality of g4. There is no agreement beyond d = 4 where
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the cut-off scale is always important. The agreement between the two schemes is violated

by higher order terms in the perturbation expansion since they represent the insertion of

irrelevant effective vertices and by leaving the asymptotical U.V. regimes. This explains

that similar argument does not hold when Z displays important M-dependence.

It is worthwhile noting that the non-trivial wave function renormalization Z and the

corresponding anomalous dimension η of the field variable can be thought as the reflection

of the mismatch between the scale dependence in the external and internal spaces around

the U.V. fixed point. In fact, the phenomenological form

〈φxφy〉 ≈ c|x− y|2−d−η (126)

cf Eq. (128) below connects the fundamental dimensional objects of the internal and

external spaces.

The flexibility of choosing the suppression functional Ck[φ] may be important for

certain models. By choosing

Ck[φ] =
k

Λ
S[φ] (127)

where Λ is the U.V. cut-off the evolution in k resums the loop expansion since the effective

Planck-constant, h̄−1(k) = h̄−1 + k/Λ evolves from 0 to h̄. This scheme is advantageous

for models with inhomogeneous saddle point eg solitons or instantons because their space-

time structure is ’RG invariant’, being independent of the gradual control of the amplitude

of the fluctuations. Another advantage offered by the flexibility in choosing the suppres-

sion functional is the possibility of preserving symmetries, the point considered in section

3.5 below.

3 Applications

We shall briefly review a few applications of the functional evolution equations. An

incomplete list of the developments not followed due to limitation in time is the following.

The exciting competition for the ’best’ critical exponents have led to several works using

this method [24], [53], [17], [50], [51], [25], [57], [26]. Such kind of application opens

up the issue of understanding the impact of truncation on the blocking [27], [28], [29]

[25], [30], [31] and looking for optimization [32], [33], [18]. The phase structure and

the nature of phase transitions are natural subjects [21], [34], [35]. The incorporation

of fermions is essential to arrive at realistic models in High Energy [36] and Condensed

Matter Physics [37]. The computation of the quenched average of Green functions, one

of the essential obstacle of progress in Condensed Matter Physics can be approached

in a new fashion by applying the internal space renormalization group method [38]. A

promising application is in general relativity [39]. Finally, the infamous problem of bound

states can be reconsidered in this framework [40], [41].

Much more to be found in review articles [42], conference proceedings [43] and PhD

thesis [44].
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3.1 Fixed points

3.1.1 Rescaling

‘The original form of the RG procedure consists of two steps, the blocking, followed by a

rescaling. The latter can be omitted if the RG strategy is used to solve models only. But

it becomes important when we try to understand the scale dependence of the theories.

Our physical intuition is based on classical physics and particles. After losing much of the

substance during the quantization procedure there is a chance to recover some clarity by

the introduction of quasiparticles, localized excitations with weak residual interaction.

The rescaling step of the RG scheme is to check a given quasiparticle assumption by

removing the corresponding scale dependence. The remaining scale dependence is a mea-

sure of the quality of the quasiparticle picture. The deviation from this non-interactive

system is parametrized in terms of anomalous dimensions.

The particle content of a theory is usually fixed by the quadratic part of its action.

Therefore the rescaling is defined in such a manner that this part of the action stays

invariant during the blocking. For an O(d) invariant Euclidean or relativistically invariant

real-time system the resulting rescaling reflects the classical dimension of the dynamical

variables and coupling constants. For non-relativistic systems the fixed point scaling is

an artificial device only to identify the non-interacting part of the action. When smooth

cut-off is used its details may influence of the scaling properties of the quadratic action,

as well, and may induce deviations from classical dimensions..

Consider the scale transformation

p→ p′ = (1 + ǫ)p, x→ x′ = (1 − ǫ)x, φ((1 + ǫ)x′) → (1 − ǫdφ)φ(x) (128)

in an O(d) invariant scalar model where dφ = (d−2+ η)/2. The parameter η reflects the

deviation of from classical dimensional analysis. The effect of this rescaling on the action

S[φ] =
∑

n

∫

p1,···,pn

up1,···,pnδp1+···+pn,0φp1 · · ·φpn, (129)

can be found in the following manner [45]:

• The momentum integral measure changes as ddp → (1 − dǫ)ddp′, giving S → [1 −
ǫd
∫

p φp
δ
δφp

]S.

• The coupling constants change as up1,···,pn → u(1−ǫ)p′1,···,(1−ǫ)p
′

n
. This can be written

as the transformation S → [1 − ǫ
∫

p φpp · ∂′p δ
δφp

]S of the action where the prime on

the gradient ∂p indicates that the derivative acts on the coupling constants only and

not on the Dirac-deltas.

• The Dirac-deltas change as δp1+···+pn,0 → δ(1−ǫ)p′1+···+(1−ǫ)p′n,0, amounting to the trans-

formation S → [1 + dǫ]S of the action.

• Finally, the field transforms as φp → [1 − ǫ(dφ − d)]φp, inducing S → [1 − ǫ(dφ −
d)]

∫

p φp
δ
δφp
S.

Adding up these contributions we find the rescaling generator

G = −
∫

p

[

φpp · ∂′p
δ

δφp
+ dφφp

δ

δφp

]

. (130)
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The RG equation for the rescaled action can be obtained by adding G acting on the

(effective) action to the right hand side, eg the evolution (49) turns out to be

k∂ke
− 1

h̄
SI

k
[φ] = (G + h̄B) e−

1
h̄
SI

k
[φ]. (131)

The rescaling of the field may be viewed as a transformation of the action without

changing the physics at the fixed point. The terms generated on the fixed point action

by the rescaling, GS∗[φ] are called redundant at the fixed point in question.

3.1.2 Reparametrizing

We considered linear rescaling of the field variable but one can easily generalize the

rescaling to non-linear reparametrization. The infinitesimal change φx → φ′
x = φx +

ǫΨ[φ; x] performed inside the path integral gives

∫

D[φ]e−S[φ] →
∫

D[φ′]e−S[φ′] =
∫

D[φ]

[

1 + ǫ
∫

x

δΨ[φ; x]

δφx

]

e−S[φ]−ǫ
∫

x
Ψ[φ;x]

δS[φ]
δφx . (132)

The reparametrization invariance of the integral assures that the modification

S[φ] → S[φ] + ǫGΨS[φ] (133)

of the action where

GΨ =
∫

x

[

Ψ[φ; x]
δS[φ]

δφx
− δΨ[φ; x]

δφx

]

(134)

is an invariance of the partition function. It has furthermore been noted [46] that some

of the infinitesimal blocking relations for the (effective) action can be written in the form

(133).

Though it is certainly very interesting to find a common structure for the functional

RG equations the connection with reparametrization invariance is not clear. The point is

that non-linear reparametrizations can not be carried out inside of the path integral as in

ordinary integrals. The problem arises from the fact that the typical configurations are

rather singular in the path integration. Calculus known from classical analysis is replaced

by Ito-calculus in Quantum Mechanics due to the nowhere-differentiable nature of the

quantum trajectories [47]. The quantum field configurations are even more singular.

Consider a free massless field φ in d dimensions and its partition function

Z =
∏

x

∫

dφxe
− ad−2

2

∑

x
(∆µφx)2 =

∏

x

∫

dφxe
− 1

2

∑

x
(∆µφ̃x)2 (135)

where ∆µφx = φx − φx−µ and the dimension of the field was removed in the second

equation, φ̃ = ad/2−1φ. The typical configurations have ∆φ̃ = O (a0), ie the discontinuity

of the original field variable is ∆φ = O
(

a1−d/2
)

.

This simple scaling, the basis of the usual U.V. divergences in quantum field theory,

gives non-differentiability in Quantum Mechanics, for d = 1, finite discontinuity in d = 2

and diverging discontinuities for d > 2. The non-differentiability can be represented



36 J. Polonyi / Central European Journal of Physics 1 (2003) 1–71

by effective potential vertices in Quantum Mechanics, [48], a reflection of the unusual

quantization rules in polar coordinates, sensitivity for operator ordering and quantum

anomalies [49]. In two dimensions the discontinuity is finite and the continuous structure

can either be preserved or destroyed by quantum fluctuations, cf. section 3.4. In higher

dimensions the singularities remain always present. It is this singular nature of the

trajectories which requires that one goes to unusually high order in the small parameter

ǫ characterizing the infinitesimal change of variables in the path integral. This problem,

composite operator renormalization, renders the non-linear change of variables a poorly

controlled subject in quantum field theories.

3.1.3 Local potential approximation

We shall search for the fixed points of the Polchinski equation in the local potential

approximation, [50] [51]. We introduce dimensionless quantities φ = k1−d/2Φ and uk(φ) =

kdUk(Φ). The RG equation with rescaling for u is

u̇ = −du+
η + d− 2

2
φu(1) − u(1)2K ′

0 + h̄K̄ ′u(2) (136)

where K̄ ′ = k−d
∫

pK
′
p and we set η = 0 in the approximation Z = 1. Notice the explicit

dependence on the cut-off function K. This reflects the fact that the RG flow depends

on the choice blocking transformation. Only the qualitative, topological features of the

renormalized trajectory and the critical exponents around a fixed point are invariant

under non-singular redefinitions of the action.

Gaussian fixed point: The fixed point equation, u̇∗ = 0 has two trivial solutions,

u∗(φ) = 0, (137)

and

u∗(φ) =
φ2

2|K ′
0|

+ h̄
K̄ ′

dK ′
0

, (138)

where K ′
0, K̄

′ < 0. For any other solution u = O (φ2) as φ→ ∞.

In order to find the scaling operators we introduce a perturbation around the fixed

point by writing u = u∗ + ǫk−λv(φ) where ǫ is infinitesimal and solve the linearized

eigenvalue equation

h̄K̄ ′v(2) = (d− λ)v +

(

2 − d

2
φ+ 2u∗(1)K ′

0

)

v(1). (139)

Having a second order differential equation one can construct a one-parameter family of

solution after having imposed say v(1)(0) = 1 in a theory with the symmetry φ → −φ.

But the polynomial solutions

vn(φ) =
n∑

ℓ=1

vn,ℓφ
2ℓ, (140)

which are parametrized by a discrete index n correspond to discrete spectrum [52]. The

critical exponents are identified by comparing the terms O (φ2n) in Eq. (139), λn =
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d+(2−d)n, and λn = d− (d+2)n, for the fixed points (137) and (138), respectively [53].

The leading order critical exponents are given entirely by the tree-level contributions.

The dimensionful coupling constants are cut-off independent in this case and we have

λn = [g2n] for the fixed point (137) where the dimension of the coupling constant [g] is

given by Eq. (24). The dominant, largest exponent λT and the corresponding coupling

constant play distinguished role in the scaling laws. The dimensionless coupling constant

can be identified with the ’reduced temperature’ t. According to the definition ξ ≈ t−ν of

the critical exponent ν we have the mean-field exponent, ν = 1/λT = 1/2. The mass is

relevant at the point (137) as expected, as shown by the beta function β2 = −2K ′
0g̃

2
2−2g̃2,

according to Eq. (55). The scaling potentials with exponential growth for large φ [54]

correspond to the continuous spectrum and their physical interpretation is unclear.

All exponents are negative at (138), this is an IR fixed point.

Wilson-Fischer fixed point: There are non-Gaussian fixed point solutions for Eq.

(136) when 2 ≤ d < 4. One can construct a one-parameter family of solutions but

the fixed point potentials which remain non-singular for arbitrary φ correspond to a dis-

crete set [55], [52]: the Wilson-Fischer fixed point for 3 < d < 4 and as many fixed

points as relevant when 2 < d < 3. The perturbation around these fixed points is a one-

parameter family of scaling potentials with continuous spectrum of critical exponents.

The restriction for solution which are finite and non-singular everywhere produces a dis-

crete spectrum [56] in good agreement with other methods of determining the critical

exponents [53], [57].

The truncation of the fixed point solution at a finite order of φ introduces error and

spurious solutions [27], [28] which can partially be eliminated by expanding the potential

along the cut-off dependent minimum [29].

3.1.4 Anomalous dimension

The RG equation for the wave function renormalization constant z(φ) = Z(Φ) is

ż = −4K ′
0u

(2)(z − 1) − 2K ′
0u

(1)z(1) − 2
K ′′

0K0

k2
u(2)2

+h̄z(2)K̄ ′ − η(z − 1) +
d+ η − 2

2
φz(1). (141)

The lesson of the case Z = 1 is that the requirement of the existence and finiteness of

u∗(φ) introduces discrete number of fixed point solutions. Let us try to follow the same

strategy again. The dominant terms of such fixed point solutions u̇ = ż = 0 of Eqs. (136)

and (141) are

u∗(φ) ≈ 2 − η

4
φ4 + Aφ

d−2+η
d+2−η , z∗(φ) ≈ B. (142)

Together with the conditions u(1)(0) = z(1)(0) = 0 imposed for the φ→ −φ symmetrical

models the solution are well determined in terms of A and B. The problem is that such

kind of argument does not fix the value of η.

There is another condition to be fulfilled by the fixed points, the critical exponents

should be invariant under rescaling. This is sufficient to determine η. Unfortunately the
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rescaling invariance of the fixed point is lost unless sharp or specially chosen polynomial

smooth cut-off is used [56], [58]. Furthermore the truncation of the gradient expansion

contributes to the violation of this invariance, too. An approximation to find the ’best’

solution when the rescaling invariance is not respected is the following [51]: Introduce

a further condition which violates rescaling invariance, say fix the value of z(0). This

allows the determination of η which would be unique if rescaling could be used to relax

our last condition. We are as close as possible to the invariant situation within our

parametrized problem when the dependence of η on z(0) is the slowest. Therefore the

condition dη/dz(0) = 0 selects the ’best’ estimate of η.

The numerical error due to the truncation of the gradient expansion has been the

subject of extensive studies in the framework of the scalar model, c.f. Ref. [42]. The

general trend is that the truncation of the gradient expansion at the local potential

approximation (zeroth-order) or at the wave function renormalization constant level (first

order) yields approximately 10% or 3% difference in the critical exponents compared with

Monte-Carlo simulations, seven-loop computations in fixed dimensions or the fifth-order

results of the expilon-espansion.

3.2 Global RG

The usual application of the RG method can be called local because as in the determi-

nation of the critical exponent it is performed around a point in the space of coupling

constants. Models with more than one scale may visit several scaling regimes as the ob-

servational scale changes between the U.V. and the IR fixed points. The determination

of the ’important’ coupling constants of such models which parametrize the physics goes

beyond the one-by-one, local analysis of the scaling regimes. It requires the careful study

of crossovers, the overlap between the scaling laws of different fixed points, a problem

considered in this section.

3.2.1 RG in Statistical and High Energy Physics

It is important to realize the similarity the way RG is used in Statistical and High Energy

Physics despite the superficial differences. The most obvious difference is that while the

running coupling constants are introduced in Particle Physics by means of Green functions

or scattering amplitudes at a certain scale, the parameters of Solid State Physics models

are defined at the cut-off, the latter being a finite scale parameter, eg lattice spacing.

Since the bare coupling constants characterize the strength of the physical processes at

the scale of the cut-off, the two ways of defining the scale dependence are qualitatively

similar and reproduce the same universal scaling laws.

The U.V. fixed point where the correlation length diverges in units of the lattice spac-

ing in Statistical Mechanics corresponds to renormalized theory in High Energy Physics

where the U.V. cut-off is removed.

There are two classification schemes of operators, one comes from Statistical and the

other from High Energy Physics: if the coupling constant of an operator increases, stays
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constant or decreases along the renormalized trajectory towards the IR the operator is

called relevant, marginal or irrelevant in Statistical Physics. The coupling constants which

can be renormalized as the U.V. cut-off is removed in such a manner that observables

converge are called renormalizable in High Energy Physics. The important point is these

classification schemes are equivalent, in particular the set of irrelevant operators at an

U.V. fixed point agrees with the set of non-renormalized ones.

One can easily give a simple quantitative argument in the leading order of the per-

turbation expansion. First let us establish the power counting argument about renormal-

izability. Suppose for the sake of simplicity that there is only one coupling constant, g,

playing the role of small parameter and a physical quantity is obtained as

〈O〉 =
∑

n

gnIn (143)

where In is sum of loop integrals. This series gives rise the expression

[In] = [O] − n[g] (144)

for the (mass) dimension of the loop integral. Let us recall that the degree of the overall

(U.V.) divergence of a loop integral is given by its dimension. We distinguish the following

cases:

• [g] < 0 : The higher powers of g decrease the dimension in (143) which is compen-

sated for by increasing the degree of the overall divergence of the loop integrals, cf Eq.

(144). Graphs with arbitrary high degree of divergence appear in the perturbation

expansion and g is called non-renormalizable.

• g[g] > 0 : The higher order loop integrals are less divergent, there are finite number of

divergent graphs in the perturbation series of any observable. The coupling constant

is super-renormalizable.

• [g] = 0 : The maximal degree of (U.V.) divergence is finite for any observable but

there are infinitely many U.V. divergent graphs. g is a renormalizable coupling

constants.

Since the IR degree of divergence of massless loop integrals is just −[In] the perturbation

expansion of a super-renormalizable or non-renormalizable massless model is IR unstable

(divergent) or stable (finite), respectively. The compromise between the U.V. and the IR

behaviors is attained by dimensionless, renormalizable coupling constants. The IR sta-

bility can be realized by a partial resummation of the perturbation expansion in massless

super-renormalizable models [59].

It is rather cumbersome but possible to prove by induction that the definition of

renormalizability outlined above according to the overall divergence of the loop integrals

remains valid in every order of the perturbation expansion.

In order to separate off the trivial scale dependence one usually removes the classical

dimension of the coupling constants by means of the cut-off in Statistical Physics. On

the tree-level, in the absence of fluctuations classical dimensional analysis applies giving

the relation g = k[g]g̃ between the dimensional and dimensionless coupling constants, g
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.

Fig. 5 An U.V. fixed point and its vicinity. The x and the y axis correspond a relevant and
an irrelevant operator, respectively. The circle denotes the vicinity of the fixed point where the
blocking relation is linearizable.

and g̃, respectively. Assuming that there is no evolution on the tree-level we have the

scaling law

g̃(k) =

(

k

Λ

)−[g]+O(h̄)

g̃(Λ) (145)

for the dimensionless coupling constants, showing that the non-renormalizability of a

coupling constant, [g] < 0 is indeed equivalent to irrelevance, the decrease of the cou-

pling constant towards the IR direction. Higher loop contributions do not change this

conclusion so long as the loop expansion is convergent and the anomalous dimension, the

contribution O (h̄) in the exponent can not overturn the sign of the classical dimension

[g]. In case of a marginal coupling constant, [g] = 0 on has to carry on with the loop

expansion until the first non-vanishing contribution to the anomalous dimension.

One can construct a much simpler and powerful argument for the equivalence of the

irrelevant and the non-renormalizable set of coupling constants in the following manner.

Consider the U.V. fixed point P and the region around it where the blocking relations can

be diagonalized, as depicted in Fig. 5. The solid line shows a renormalized trajectory of

a model which contains relevant operator only at the cut-off. The Lagrangian of another

model whose trajectory is shown by the dotted line contains an irrelevant operator, as

well. The difference between the two models becomes small as we move towards the IR

direction and the physics around the end of the U.V. scaling regime is more independent

on the initial value of the irrelevant coupling constants‡ longer the U.V. regime is. This

is what is called universality of the long range, low energy phenomena. By looking

”backwards” and increasing the cut-off energy, as done in Particle Physics, the non-

vanishing irrelevant coupling constants explode and the trajectory is deflected from the

fixed point. As a result we cannot maneuver ourselves into the U.V. fixed point in the

presence of irrelevant operators in the theory. Since the infinite value of the cut-off

corresponds to the renormalized theory, represented by the fixed point, the irrelevant

operators are non-renormalizable. Despite its simplicity, this argument is valid without

invoking any small parameter to use in the construction of the perturbation expansion.

Renormalizable models were thought to be essential in High Energy Physics. These

models in which a sufficiently large class of observables can be made convergent are

‡ More precisely all the irrelevant coupling constants can modify is an overall scale.
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distinguished by their simplicity, their interactions exist without any cut-off. Examples

are Yang-Mills models in four dimensions and the sine-Gordon, Thirring and the X-Y

models in two dimensions. The non-renormalizable models are those whose existence

requires a finite value of the U.V. cut-off, like QED, the φ4 model in four dimensions, the

Standard Model and models in Solid State Physics. It is believed that asymptotically

free models are renormalizable only.

The traditional reason to discard non-renormalizable models was their weak predictive

power due to the infinitely many renormalization conditions they require. Since we can

never be sure what kind of Lagrangian to extrapolate up to high energies we need another

point of view. According to the universality scenario the non-renormalizable models can

be excluded because they cannot produce anything different from renormalizable theories.

The cut-off independent physics of the latter is parametrized by means of renormalized

coupling constants. But the subtle point to study below is that this reasoning assumes

the presence of a single scaling regime with non-trivial scaling laws in the theory which

is a rather unrealistic feature [7].

Thus renormalizability is the requirement of a simple extrapolation to the U.V. regime

without encountering ”new physics”. The evolution of High Energy Physics shows that

this is a rather unrealistic assumption, any model with such a feature can be an ap-

proximation at best, to study a given interaction and to sacrify the rest for the sake

of simplicity. The goals are less ambitious in Statistical Physics and apart of the case

of second order phase transitions the renormalizability of models is required seldom, for

convenience only, not to carry the regulator through the computation. All models in

Solid State Physics are effective ones given with a physically motivated cut-off.

Let us start the discussion of the possible effect of the co-existence of several scaling

regimes along the RG flow with the simplest case, a model with a gap in the excitation

spectrum above the ground state, ie with finite correlation length, ξ <∞. Suppose that

the RG flow of the model starts in the vicinity of an U.V. fixed point and reaches an IR

fixed point region as shown in Fig. 6. Universality, the parametrizability of the physics

beyond the U.V. scaling regime by the relevant coupling constants of the U.V. scaling

laws, tacitly assumes the absence of any new relevant coupling constants as we move along

the renormalized trajectory towards the IR, as shown in Fig. 5. This assumption is in fact

correct for massive models whose IR scaling laws are trivial, meaning that that only the

Gaussian mass term is relevant. To see why let us consider the RG flow in the IR side of

the crossover, when the U.V. cut-off, say the lattice spacing a >> ξ and make a blocking

step, a → a′ which generates the change gn(a) → gn(a
′) in the coupling constants. The

change ∆gn(a) = gn(a
′) − gn(a) is due to fluctuation modes whose characteristic length

is a < ℓ < a′. Owing to the inequality ξ << a < ℓ these fluctuations are suppressed

by e−a/ξ and the flow slows down, gn(a) ≈ gn(a
′). This implies the absence of run-away

trajectories, the absence of relevant non-Gaussian operator. But more realistic models

with massless particles or with dynamical or spontaneous symmetry breaking occurring

at finite or infinite length scales, respectively, or with condensate in the ground state

the IR scaling may generate new relevant operators and universality, as stated in the
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UV IR

ξ

Fig. 6 The RG flow of a model with massive particles. The renormalized trajectory connects
the U.V. and IR scaling regimes, indicated by circles which are separated by a crossover at the
intrinsic scale of the model, p ≈ 1/ξ.

introduction, referring to a single scaling regime is not a useful concept any more.

3.2.2 Scalar model

In order to understand better the generic case shown in Fig. 6 we return to its simplest

realization, the scalar model in the local potential approximation, Eq. (14), [7]. One

does not expect anything unusual here since the model possesses a gap and the IR scaling

regime is trivial in either the symmetrical or symmetry broken phase. But we shall see

that the model has soft large amplitude fluctuations and the true vacuum is just there

where this non-perturbative and the well known perturbative domains join. The second

derivative of the local potential is discontinuous there, depends on the direction from

which the vacuum is approached. We shall arrive at some understanding of the soft

modes in two step, by separating the loop contributions from the tree-level structure. We

start with the more traditional loop contributions.

To facilitate the dealing with soft modes we introduce an external constraint which

controls the expectation value
∫

x〈φx〉j = VΦ. The usual realization of this constraint

is the introduction of an external source as in Eq. (5). We shall consider the model

in the symmetry broken phase where
∫

x〈φx〉0 = V Φvac 6= 0 and choose homogeneous

external source jx = J which can destabilize the naive symmetry broken vacuum whenever

JΦvac < 0 and can induce |Φ| < Φvac. Note that such a control of the field expectation

value by an external source preserves the locality of the action.

The beta-functions, as given by Eq. (23), depend strongly on the propagator G(k2) =

1/(k2 + g2(k)), represented by the the internal lines in Figs. 3. The qualitative features

of the function G−1(k2) are shown in Fig. 7 for Φ = 0. According to the loop expansion

G−1(k2) = k2 + U
(2)
k (Φ) =

{

k2 + U
(2)
Λ (Φ) + O (h̄) U

(2)
k << k2,

k2 + U
(2)
0 (Φ) + O (h̄) k2 << U

(2)
k ,

(146)

the bending of the lines in the figure is due to radiative corrections, as far as the per-

turbative region, G−1 >> 1 is concerned. The dashed line corresponds to the massless

Coleman-Weinberg case [23]. The flow above or below this separatrix is in the symmet-

rical or symmetry broken phase, respectively. This qualitative picture is valid so long

|Φ| < Φvac.
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G−1
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D

p

Fig. 7 The inverse propagator G−1(p2) of the scalar model as the function of the momentum
square p2 for Φ = 0. The dotted and solid lines correspond to the symmetrical and the symmetry
broken phase, respectively. The massless case is shown by dashed line. One can distinguish four
different scaling regimes, namely A: U.V., B: symmetrical massive, C: precursor of condensation
and D: spinodial phase separation regime.

It is important to recall that the argument of the logarithmic function in the WH

equation in Eq. (14), G−1(k2), is the curvature of the action at the cut-off and serves

as a measure of the restoring force driving fluctuations back to their trivial equilibrium

position. Thus perturbative treatment is reliable and the loop contributions are calculable

so long G̃−1(k2) = G−1(k2)/k2 >> g̃4.

In order to have a qualitative ides if what is happening let us consider the model

where UΛ(Φ) = m2φ2/2 + gφ4/4! at the cut-off, k = Λ. By simply ignoring the loop

corrections we have g2(k) = m2, g4(k) = g and gn(k) = 0 for n > 4 on the tree-

level, ie m2 and g can be identified with renormalized parameters and m2 < 0. For an

isolated system (j = 0) where |Φ| = Φvac = −6m2/g and the use of the perturbation

expansion appears to be justified for G̃−1(k2) = 1 − m2/k2 > g4k
d−4. Spontaneous

symmetry breaking, or the appearance of a condensate in the ground state in general,

is characterized by instability of fluctuations around the trivial, vanishing saddle point.

When an external source is coupled to φx to dial |Φ| < Φvac in the symmetry broken phase

then non-perturbative effects set in as k decreases. We can see this easily when the field

expectation value is squeezed in the concave part of the potential, |Φ| < Φinfl = −2m2/g =

Φvac/3. In fact, G−1 approaches zero and the amplitude of the fluctuations explodes at

k =
√

−m2 − gΦ2/2. Below this non-perturbative regime the plane wave modes become

unstable since G−1(k2) < 0 and a coherent state is formed, reflected in the appearance

of a non-homogeneous saddle point with characteristic scale 1/
√

−m2 − gΦ2/2

The mechanism responsible of spreading the instability over the whole region |Φ| <
Φvac comes from the tree-level structure and will be discussed later, in section 3.3.

We identify at this point four different scaling regimes:

A: In the U.V. scaling regime k2 ≫ g2(k): Gn ≈ gn/k
2, the mass term is negligible.

B: The explicit scale dependence disappears in the IR regime k2 ≪ g2(k) of the sym-

metrical phase, where Gn ≈ gn/g2. This is a trivial scaling, there are no interactive

relevant operators.

C: The onset of the condensation is at G−1(k2) = k2 + g2(k) ≈ 0 and the higher loop
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effects start to dominate.

D: The spinodal unstable region where the homogeneous ground state becomes unstable

against infinitesimal fluctuations, k2+g2(k) < 0. The leading scaling laws are coming

from tree-level, classical physics.

There are two crossover regimes. One is between the scaling regimes A and B at

k2 ≈ g2(k). Another one is between A and C when |Φ| < Φinfl. This will be extended to

the region |Φ| < Φvac by tree-level contributions. We shall look into the crossover of the

symmetry broken phase.

The best is to follow the evolution of the local potential the plane (Φ, k2), as shown

in Fig. 8. The potential Uk(Φ) should be imagined as a surface above the plane (Φ, k2).

The RG equations for the dimensionless coupling constants, ˙̃gn = β̃n where β̃n is given

by Eq. (25) are integrated in the direction of the arrows. The initial condition ŨΛ(φ̃) =

m2φ̃2/2k2+gkd−4φ̃4/4!, set at k = Λ, along the horizontal line on the top. As the running

cut-off k is decreased and the RG equations are integrated the potential becomes known

along horizontal line intercepting the ordinate at k2. The spontaneous breaking of the

symmetry in the vacuum implies that for sufficiently small |Φ| the propagator explodes

by approaching a singularity at k = kcr(Φ) as k decreases. This happens first at Φ = 0

when the running horizontal line touches the two curves shown in the Figure. These

curves correspond to the generalization of the minimum and the inflection point of the

potential for k2 > 0 and are given by the relations k2 + m2
B + gΦ2

min/6 + O (h̄) = 0 and

k2 + m2
B + gΦ2

infl/2 + O (h̄) = 0, respectively. We shall argue in section 3.3 that the

singularity lies close to the extension of the minimum,

kcr(Φmin(k)) ≈ k. (147)

The numerical integration of the WH equation requires a truncation of the summation

in Eq. (20) for the local potential. By using nmax ≤ 22 the singular line can be located

with reasonable accuracy. Close to the singular line on the plane (Φ, k2) the coupling

constants increase rapidly and the truncation of the potential is not acceptable. In the

U.V. scaling regime (denoted by A in Fig. 7) the propagator is small, G = O (k2), and

the first term on the right hand side of Eq. (23) is dominant. As we approach kcr the

propagator starts to increase, all term contribute equally in the beta functions and we

enter into a new scaling regime (C in Fig. 7).

In order to connect the two scaling regimes we shall consider fm,n(k/Λ) = ∂β̃m,k(φ)/∂g̃Λ,n,

the dependence of the beta functions at k on the microscopical initial condition, imposed

at k = Λ. The simplest way to estimate fm,n(x) is to start with fm,n(1) ≈ 1 which can

be inferred from the form (23). The scaling law (145) allows us to write

fm,n

(

k

Λ

)

=
∂β̃m(φ)

∂g̃n(Λ)
=
∂β̃m(φ)

∂g̃n(k)

(

k

Λ

)−[gn]

= O




(

k

Λ

)−[gn]


 (148)

up to corrections O (h̄), confirming the universality of the U.V. scaling regime. In fact,

initial, microscopical value of the the irrelevant, non-renormalizable coupling constants

([g] < 0) leave vanishing trace on the dynamics as Λ/k → ∞.
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Fig. 8 The (Φ, k2) plane where the local potential Uk(Φ) is defined. The potential should be
imagined as a surface above the this plan. The initial condition gives UΛ(Φ) on the horizontal
dashed line and the RG equation is integrated from this line in the direction of the arrows. The
extension of the minimum and the inflection point of the potential from k2 = 0 to k2 > 0 is
shown by solid and dotted lines, respectively.

The numerical determination of the function fm,n(x) in d = 4 supports the prediction

(148) in the U.V. scaling regime, namely the impact of a non-renormalizable coupling

constants gn(Λ) on the beta functions weakens as (k/Λ)−[gn] for x ≈ 1. But this trend

changes for x < 1 as the critical value of the cut-off, kcr, found to be in agreement with Eq.

(147), is approached in what f starts to increase. The potential must not be truncated

close to the singularity and the numerical results appear inconclusive. But the increase

of fm,n(x) at the crossover actually starts already far enough from kcr when all couplings

are small, g̃n << 1 and the truncation is safe. The lesson of this numerical result is

that universality as used around the U.V. scaling regime alone is not valid anymore. The

instability at the onset of the condensation at k ≈ kcr introduces divergences which are

strong enough to overwrite the U.V. scaling laws and generate new relevant operators.

Such an instability of the RG flow enhances the sensitivity of the physics at finite length

scales on the microscopical parameters.

The need of generalizing universality in a global manner has been shown for |Φ| < Φvac.

It remains to see if such a phenomenon can be observed at the highly singular point

|Φ| = Φvac, in the true vacuum.

A similar phenomenon has already been noticed in connection with the BCS ground

state. It has been pointed out that kinematical factors turn the four electron operator

which is irrelevant according to the power counting into marginal for processes close to

the Fermi level [60], [61] [62]. The collinear divergences at the Fermi level drive the

instability of the non-condensed vacuum and generate new scaling laws. Another similar

mechanism is the origin of the strong long range correlations in the vacuum state of

Yang-Mills models. They appear as a consequence of non-renormalizable, U.V. irrelevant

Haar-measure term of the path integral [63].

We note finally that the view of the RG flow as a parallel transport, mentioned in

section 2.3 is particularly well suited for the studies of crossovers. This is because the

sensitivity matrix (78) is a global quantity displaying clearly the sensitivity of the IR

physics on the U.V. parameters by construction.
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Fig. 9 The qualitative dependence of the four types of coupling constants on the observational
length scale. The U.V. and the IR scaling regimes are 0 < x < xuv and xir < x, respectively.
The dashed line in (c) corresponds to a different initial condition for the RG flow.

3.2.3 RG microscope

We now embark on a rather speculative subject, playing with the possibility of matching

different scaling laws. Let us start with the generic case, a model with U.V. and IR scaling

regimes, separated by a crossover, as sketched in Fig. 6. We have a classification of the

very same operator algebra at both scaling regimes. One can write any local operator A

as a linear superposition of scaling operators, A =
∑

n cA,nOn, the latter being the eigen-

operators of the linearized blocking relations of a scaling regime, On(k) ≈ (Λ/k)νnO(Λ)n.

Let us denote by νA the largest scaling dimension of scaling operators which occur in the

a linear decomposition of A, νA = maxn νn. We shall simplify matters by calling a local

A operator relevant, marginal or irrelevant if νA > 0, νA = 0 or νA < 0, respectively.

We ignore marginal case by assuming that radiative corrections always generate non-

vanishing scaling dimensions.

One can distinguish between the following four cases:

(a) rU.V.rIR: relevant in both regimes,

(b) rU.V.iIR: relevant in the U.V., irrelevant in the IR,

(c) iU.V.rIR: irrelevant in the U.V., relevant in the IR,

(d) iU.V.iIR: irrelevant in both regimes.

The qualitative dependence of the corresponding coupling constants is shown in Figs. 9.

Let us consider for example QED containing electrons, muons and ions with metallic

density. There is an U.V. scaling regime for energies well above the electron mass. Sup-

pose that the ground state is a BCS type superconductor where the IR scaling laws are

driven by long range phonon mediated interactions. The electron mass is an example of

the class (a). The muon mass belongs to class (b) owing to the decoupling of muons at

low energy. By assuming that radiative corrections turn the four fermion vertex relevant
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it serves as an example of class (c). Finally the six fermion vertex is doubly irrelevant

and belongs to class (d).

The interesting class is (c). Suppose that we modify the values of the bare coupling

constants at the initial condition and find the dashed line. Due to the universality of the

U.V. scaling regime the two renormalized trajectories converge towards each other for

0 < x < xuv and run very close between the two scaling regimes, xuv < x < xir. But in

the IR scaling regime where the coupling constant is relevant the two trajectories start to

diverge from each other. The question is whether the difference of the trajectories in the

U.V. scaling regime has any impact on the difference found at the IR. It may happen that

the IR phenomena is independent of the U.V. regime and the crossover smear completely

out the small effects of the U.V. initial condition of the trajectory. But one can imagine

that the extremely small differences left at the crossover remain important and lead to

an initial condition dependent divergence at the IR. The answer is model dependent and

can be given by the detailed analysis of the set of coupled differential equations.

In order to make this point clearer let us imagine a model with two parameters, say a

mass m and a coupling constant g, both expressed in a dimensionless manner by means

of the U.V. cut-off, the lattice spacing a. Suppose the following rather simple scaling

laws: The beta function of the mass is approximately constant,

γ(m, g) =
a

m

∂m

∂a
≈ βm > 0 (149)

and of the coupling constant g can be written as

β(m, g) = a
∂g

∂a
=
[

χ
(
m

mcr

)

νU.V. + χ
(
mcr

m

)

νI.R.

]

g (150)

where χ(z) is interpolating smoothly between χ(0) = 1 and χ(∞) = 0. The running mass

is given by

m(a) = m(a0)
(
a

a0

)βm

, (151)

and the length scale of the crossover between the U.V. and the I.R. scaling regimes is at

acr ≈ aU.V.(mcr/mU.V.)
1/βm . The asymptotical scaling for the coupling constant is

g(aU.V.) ≈ cU.V.g(acr)
(
aU.V.

acr

)−νU.V.

, aU.V. ≪ acr,

g(aI.R.) ≈ cI.R.g(acr)
(
aI.R.

acr

)νI.R.

, aI.R. ≫ acr. (152)

Let us furthermore assume that νU.V. < 0 and νI.R. > 0, i.e. this coupling constant

belongs to the class (c). The sensitivity of the coupling constant in the asymptotical

regions, g(aU.V.) and g(aI.R.) on g(acr) is

∂g(aU.V.)

∂g(acr)
≈ cU.V.

(
aU.V.
acr

)−νU.V.

,

∂g(aI.R.)

∂g(acr)
≈ cI.R.

(
aI.R.
acr

)νI.R.

(153)
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therefore
∂g(aI.R.)

∂g(aU.V.)
≈ cI.R.
cU.V.

aνI.R.

I.R. a
νU.V.

U.V.

aνI.R.+νU.V.
cr

. (154)

If the IR scaling regime is long enough then the difference between renormalized trajec-

tories with different initial conditions imposed in the U.V. regime can be as large or even

larger than at the initial condition. When the U.V. and the I.R. observational scales are

related by

aU.V. ≈ acr

(
acr
aI.R.

)−νI.R./νU.V.

. (155)

then (154) is O (a0) cI.R./cU.V. and despite the ’focusing’ of the universality in the U.V.

regime the ’divergence’ of the trajectories in the I.R. can amplify the extremely weak

dependence on the initial condition at finite scales. The increase of aI.R. in this case

enhances the sensitivity on the initial condition and we can ’see’ the initial value of the

non-renormalizable coupling constants at smaller distance a.

The lesson of the numerical results mentioned above is that the scalar theory in the

unstable regime realizes such a RG ’microscope’. The loss of the U.V. based universality

as we approach the critical line on the plane (Φ, k2) suggests that there is at least one

relevant operator at the new scaling laws which is irrelevant in the U.V.. We do not

know the eigen-operators of the linearized blocking relations in this region but this new

relevant operator must contain the local monomials φnx with n > 4. To make it more

difficult, it is not obvious that this is a local operator as opposed to the scaling operators

of an U.V. fixed point.

In order to parametrize the physics of the scalar model we have to use this new

coupling constant at the U.V. cut-off, as an additional free parameter. This is rather

un-practical not only because we do not know the operator in question but mainly due

to the smallness of this coupling constants in the U.V. and the crossover region. It seems

more reasonable to use a mixed parametrization, consisting of the renormalizable coupling

constants at the U.V. cut-off and the new coupling constant taken close to the singularity

where it has large enough value, ie k ≈ kcr. In the scalar model kcr → 0 as the external

source is turned off. We shall call the new coupling constants appearing in this manner

hidden parameters.

What operator corresponds to the hidden parameter of the scalar model? It seems

reasonable to assume that the only observables whose value is determined at the onset of

the condensate is just the magnitude of the condensate. Therefore the conjecture is that

the strength of the condensate, Φvac, is dynamically independent of the renormalizable

parameters g2, g4 in d = 4. We have therefore the following possibilities in parametrizing

the scalar model with spontaneously broken symmetry:

• We identify a non-renormalizable coupling constant, gnr, which influences the value

of the condensate and use the bare values of g2(Λ), g4(Λ), gnr(Λ) at the U.V cut-off.

• One uses the renormalizable bare coupling constants from the U.V. end and the

strength of the condensate from the I.R. regime, g2(Λ), g4(Λ),Φvac.

• One may use I.R. quantities only, say g2(0), g4(0),Φvac.
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Our point is that the scalar model with spontaneously broken symmetry has three free

parameters instead of two. This rather surprising conjecture can be neither supported

nor excluded by perturbation expansion because one can not connect the U.V. and the

I.R. regimes in a reliable manner. The numerical studies of the scalar model carried out

so far are inconclusive, as well, because they were constrained to the quartic potential

and the possible importance of higher order vertices in forming the condensate was not

considered.

The modification of the scaling laws of the scalar model, necessary to generate a

hidden parameter comes from the onset of a condensation. As discussed below in Section

3.3 there are non-trivial tree-level scaling laws in a condensate which overwrite the loop-

generated beta functions and may provide the dynamical origin of the hidden parameter.

In a similar manner one can speculate about the role of the Cooper-pair condensate in the

BCS vacuum. If there turns out to be a hidden parameter as in the one-component scalar

model then the non-renormalizable effective coupling constants of the Standard Model

would influence the supercurrent density in ordinary metals! Another possible example

is the Higgs sector of the Standard Model, where the hidden parameter, if exists, would

be an additional free parameter of the model.

One may go further and inquire if dynamical symmetry breaking can modify the

scaling law in a similar manner. The bound state formation, responsible to the generation

of large anomalous dimensions in strong coupling QED [64], in strong extended technicolor

scenario [65, 66], in the Nambu-Jona-Lasinio model [67] or in the top-quark condensate

mechanism [68, 66] may be a source of hidden parameters, as well.

Hidden parameters represent an unexpected ’coupling’ between phenomena with very

different scales and question of our traditional strategy to understand a complex system

by analyzing its constituents first. The axial [70] or scale [71] anomalies represent a

well know problem of this sort, except that the regulator independence of the anomaly

suggests that for each classical IR fixed point there is a single ’anomalous’ one without

continuous fine tuning.

Universality is expressed in the context of High Energy Physics by the decoupling

theorem [69]. Let us start with a renormalizable model containing a heavy and a light

particle and consider the effective theory for the light particle obtained by eliminating

the heavy one. There are two possible classification schemes for the effective vertices for

the light particle, generated by the elimination process. One is according to the U.V.

scaling laws in the effective theory, i.e. there are renormalizable and non-renormalizable

vertices. Another scheme is based on the strength of the effective interactions, i.e. there

are vertices which are stay constant or diverge when the ratio of the light and the heavy

particle mass tends to zero and there are vertices whose coefficients tend to zero in the

same limit. The decoupling theorem asserts that these two classification schemes are

equivalent, i.e. the non-renormalizable effective coupling constants are vanishing when

the heavy mass diverges. The existence of the hidden parameter is, at the final count is

a violation of this theorem.
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3.2.4 The Theory of Everything

The appearance of a hidden coupling constant renders our goal of understanding the

hierarchy of interactions in Nature extremely complicated. In fact, the RG flow of the

Theory of Everything must be imagined in the space of all coupling constants in Physics,

including the parameters of the Grand Unified Models down to different models in Solid

State Physics or hydrodynamics in the classical regime, as indicated in Fig. 10. Different

fixed points are approached by the trajectory when the scale dependence is dominated

by a single interaction. But all fixed point except the U.V. one is avoided due to the

non-renormalizable, irrelevant vertices [69] generated by the dynamics of the next fixed

point in the U.V. direction.

Such a wandering in the space of coupling constants echoes the age old disagreement

between High Energy and Solid State Physics. It is usually taken for granted in the High

Energy Physics community that the sufficiently precise determination of the microscopical

parameters of the Theory of Everything would ’fix’ the physics at lower energies. The

obvious difficulties to extract the high energy parameters from experiments which render

each new experiment expensive, long and large scale operation indicate that this might

not be a practical direction to follow. In other words, the relevant coupling constants have

positive Lyapunov exponent and render the trajectory extremely sensitive on the initial

conditions. Therefore the characterization of the RG flow of The Theory of Everything

by the initial condition, though being possible mathematically, is not practical due to the

finite resolution of the measurements. The other side of the coin, the physical parameters

of a fixed point are clearly the relevant coupling constants of the given scaling regime.

They are the object of Solid State Physics, as far as the scaling regimes QED, CM and IR

are concerned in Fig. 10. One looses sight of the fundamental laws but gains predictive

power by restricting oneself to local studies of the RG flow.

3.3 Instability induced renormalization

In the traditional applications of the RG method which are based on the perturbation

expansion the RG trajectory is sought in the vicinity of the Gaussian fixed point. One can

describe in this manner crossovers which connect scaling regimes which share the same

small parameter. We can enlarge the classes of accessible crossovers by relying on the

saddle point expansion, the only systematical non-perturbative approximation scheme.

The generic way to induce new crossover in this scheme is by passing a condensation at

a finite length scale [72].

One may object that there is nothing surprising or new in finding that the physics is

fundamentally changed by a condensation mechanism. What additional knowledge can

then be gained by looking into condensation by the method of the RG? The point is that

the classification of operators around a fixed point which was achieved in the framework of

the perturbation expansion changes essentially by the condensation, ie the appearance of

a non-trivial saddle point. To see how this happens we return to the strategy followed at

Eq. (2). Let us consider an observable A in a model with a single coupling constant g for
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Fig. 10 The renormalization group flow of the Theory of Everything. The branching drawn at
an IR scale is a phase transition driven by the environment, such as particle or heat reservoirs.

simplicity, computed in the saddle point expansion, 〈A〉 = F0(g,Λ)+ h̄F1(g,Λ)+O
(

h̄2
)

,

where Fℓ(g,Λ) denotes the ℓ-loop contribution. We can obtain the beta function by

taking the derivative of this equation with respect to cut-off Λ,

β = k∂kg = −k∂k(F0 + h̄F1)

∂g(F0 + h̄F1)
+O

(

h̄2
)

= −k∂kF0

∂gF0

[

1+h̄
(
∂kF1

∂kF0
− ∂gF1

∂gF0

)]

+O
(

h̄2
)

. (156)

The loop corrections Fℓ(g,Λ), ℓ ≥ 1 are polynomials of the coupling constants g. But

the leading order, tree-level piece usually has stronger dependence on g and may become

singular as g → 0. The tree-level contribution may induce qualitatively new scaling laws

with new set of relevant operators. Due to the singularity at g = 0 the condensation

actually realizes the dangerous irrelevant variable scenario [73].

At the onset of an instability, region C in Fig. 7 certain modes experience strong

nonlinearity and develop large amplitude fluctuations. But as we enter in the unstable

regime one may hope to recover quasiparticles with weak residual interaction after having

settled the dynamics of the unstable modes. At least this is what happens within the

framework of the semiclassical, or loop expansion where the fluctuations remain small

after the proper condensate is found. There are models where the vacuum state is just at

the edge of the instability, like the scalar model discussed above in the symmetry broken

phase.

The tree-level contributions to the blocking transformation, if exist, are more impor-

tant then the loop corrections. This is the reason that we shall consider the tree-level,

O
(

h̄0
)

RG flow. There is no evolution in this order so long the system is stable and

the saddle point is trivial. But as soon as we arrive at the unstable region the RG flow

becomes non-trivial.
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3.3.1 Unstable effective potential

Before turning to the actual tree-level blocking let us review briefly the kind of instabilities

one expects. As we enter into the unstable regime k2 + g2(k) < 0 the trivial saddle point,

φk = 0 becomes unstable in the blocking (7). To understand this instability better we

introduce the constrained functional integral,

ZΦ =
∫

D[φ]e−SB[φ]δ
(

1

V

∫

x
φx − Φ

)

(157)

corresponding to a conserved order parameter. By following the RG trajectory until

the IR end point one eliminates all but the homogeneous mode by keeping the partition

function unchanged,

ZΦ = e−Sk=0[Φ] = e−V Uk=0(Φ). (158)

To find another local representation for this constrained partition function we consider the

generator functional density w[j] = W [j]/V defined by means of Eq. (5) and compute its

Legendre transform, Veff(Φ) in the mean field approximation. For this end we set jx = J

and write

−Veff(Φ) = w[J ] − JΦ = min
J,φ

[−Uk=0(φ) + J(φ− Φ)]. (159)

The minimization with respect φ and J yields J = dw(J)/dJ and and φ = Φ, respectively.

Finally we have Veff(Φ) = Uk=0(Φ), the result announced after Eq. (16) so long the mean

field approximation is reliable, namely in the thermodynamical limit and in the absence

of large amplitude fluctuations. It is further known that Veff(Φ) is convex.

The instabilities of the kind mentioned above are well known in the case of first order

phase transitions. But similar instabilities may appear at higher order phase transitions,

as well. In fact, the magnetization of the Ising model as the function of the external

magnetic field shows discontinuous behavior below the critical temperature. Therefore

the free energy constrained into a sector with a given magnetization displays such kind

of instabilities.

Suppose that the Uk=0(Φ) determined perturbatively has degenerate minima and a

concave part. Then it is advantageous to introduce two curves on the (Φ, k) plane of Fig.

8, Φinfl(k) and Φmin(k) defined by k2Φmin +U
(1)
k (Φmin) = 0, and k2 +U

(2)
k (Φinfl) = 0. The

stable region in the mean-field approximation is |Φ| > Φmin(0) = Φvac. For Φinfl(0) <

|Φ| < Φmin(0) there are two minima in φ for the last equation in (159). One of them

is metastable, ie is unstable against sufficiently large amplitude modes. The spinodal

phase separation, the instability against infinitesimally small amplitude fluctuations oc-

curs when some eigenvalues of the second functional derivative of the action becomes

negative. This is region D in Fig. 7, |Φ| < Φinfl(0). It is unreachable by the mean-field

treatment because no local minimum is found in φ which would satisfy |φ| < Φinfl(0).

To understand better the nature of these unstable regions one has to go beyond the

mean-field approximation and to follow the dynamics of the growing inhomogeneous in-

stabilities. We shall use the tree-level WH equation to deal with such large amplitude,

inhomogeneous fluctuations.
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3.3.2 Tree-level WH equation

The construction of the condensate within the unstable region implies the minimization

of the action with respect to a large number of modes. The RG strategy offers an

approximation for such a rather involved problem, it deals with the modes one-by-one

during the minimization [75], [74].

The negative curvature of the potential makes the saddle point in (9) non-trivial,

Sk−∆k[φ] = min
φ̃′

Sk[φ+ φ̃′] = Sk[φ+ φ̃cl[φ]] 6= Sk[φ]. (160)

Since the saddle point depends in general on the background field, φ̃cl = φ̃cl[φ], the action

is modified during the blocking and we find a non-trivial RG flow [74]. The local potential

approximation to the tree-level blocking is

Uk−∆k(Φ) = min
φ̃cl,x

∫

x

[
1

2
(∂µφ̃cl,x)

2 + Uk(Φ + φ̃cl,x,)
]

. (161)

One encounters here a conceptual problem. The k-dependence of the tree-level RG

flow might well be singular since there is no obvious reason that the saddle points which

are usually rather singular functions of the parameters evolve smoothly. This problem

has already been noticed as a possible ’first order phase transition’ in the blocking which

induces discontinuous RG flow [76], [77], [78]. It was later shown by rigorous methods that

the RG flow is either continuous or the blocked action is non-local [79]. The resolution of

this apparent paradox is that the saddle point actually develops in a continuous manner

as we shall shown below. As the RG flow approaches the onset of the condensate, k → kcr
then the new scaling laws generate such an action that the saddle point turns out to be

continuous in k.

3.3.3 Plane wave saddle points

The saddle points, the minima in (160) satisfy the highly non-linear Euler-Lagrange

equations whose solutions are difficult to find. The use of sharp cut-off slightly simplifies

the problem since it reduces the functional space in which the minimum is sought to

φ̃ ∈ Fk\Fk−∆k. We shall retain the the plane wave saddle points only,

φ̃cl,p =
ρk
2

[

eiθkδp,kek
+ e−iθkδp,−kek

]

, φ̃cl,x = ρk cos(kek · x+ θk). (162)

The parameter θk and the unit vector ek correspond to zero modes, they control the

breakdown of translational and rotational symmetries.

This is a key to what happens at the unstable line: Despite the discreteness of

the internal symmetry φ → −φ there are soft modes because the inhomogeneous sad-

dle points break the continuous external symmetries. The condensation of particles with

non-vanishing momenta automatically generates Goldstone modes. This phenomenon is

well known for solids where the saddle point is a crystal of solitons which breaks external

symmetries and there is no integration over the zero mode to restore the symmetrical
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ground state. Our point is that the soft modes make their appearance even if the sym-

metry of the ground state is restored by the integration over the zero modes.

The amplitude ρk is determined by minimization,

Uk−∆k(Φ) = min
ρk

(
1

4
k2ρ2

k +
1

π

∫ π

0
dyUk(Φ + ρk cos y)

)

, (163)

in the local potential approximation. The numerical implementation of this iterative

procedure to find the RG flow with an initial condition imposed on the potential at

k = Λ gave the following results [74]:

(1) The recursive blocking relation, Eq. (163) is not a finite difference equation. Despite

of this the flow converges as ∆k → 0.

(2) The amplitude of the saddle point satisfies the equation Φ + ρ(k) = Φmin(k).

(3) The potential obtained by the tree-level blocking is Uk(Φ) = −1
2
k2Φ2.

(4) The tree-level results above hold independently of the choice of the potential at the

cut-off.

The key is point 3, point 1 follows immediately from it. The lesson of this result is that

the action is degenerate for the modes at the cut-off, the kinetic and potential energies

cancel. The ’best’ effective theory for a given plane wave mode is the one whose cut-off

k is slightly above the wave vector of the mode. This result suggests the degeneracy of

the action within the whole unstable region. Conversely, if we can show that the action

is degenerate at the cut-off within the unstable regime we established this potential.

We prove by induction in the number of steps k → k − ∆k that the variation of the

action density within the unstable regime is O (∆k). This result protects the consistency

of the saddle point expansion for d > 1 since ∆k ≥ 2π/L where L is the size of the system

and therefore the variation of the action is O
(

Ld−1
)

. Recall that kcr denotes the cut-off

where the kinetic snd the potential energies cancel.

First step: Let us denote by k′ the value of the cut-off at the first occurrence of non-

trivial saddle point in the numerical implementation of Eq. (163). It obviously satisfies

the inequality kcr −∆k < k′ < kcr. The trivial saddle point φ̃cs = 0 becomes unstable for

blockings with |Φ| < Φinfl(k
′) in which case |Φ + φ̃cs,x| < Φinfl(k

′), ie |φ̃cs,x| = O
(√

∆k
)

.

The term O
(

φ̃
)

is canceled in the action on a homogeneous background field so the

O
(

φ̃2
cs

)

contribution gives O (∆k) variation.

Induction: Suppose that the variation of the action is O (∆k) in the unstable region

and we lower the cut-off, k → k−∆k. At the new cut-off the balance between the kinetic

and the potential energy is lost by an amount of O (∆k) since the potential energy is

still the given by k but the kinetic energy corresponds to the lowered cut-off, k − ∆k.

Thus the negative curvature potential energy wins and the action bends downward in the

unstable region as the function of the amplitude of the plane wave. By assuming that

the amplitude is stabilized at an O (∆k0) value (will be checked later) the variation of

the action density O (∆k) in the unstable region.

Point 2 can be understood in the following manner: During the minimization of the

action ρk slides down on the O (∆k) slope until the potential starts to increase again. We

can find where this happens by equating the slope of the original, bare potential with that
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stated in point 3. One would expect that the deepest point is reached at ρk = Φinfl(k).

But the O (φ4) term in Uk(φ) is not yet strong enough to make the potential increase

strong enough here. The two slopes agree just at ρk = Φmin(k).

Result 4 which follows from 3, as well, can be called super universality since it reflects

scaling laws where all coupling constants are irrelevant. Note that the k-dependence is

continuous through the whole RG trajectory.

Point 3 is a generalized Maxwell construction. It reduces to the traditional Maxwell

construction for k = 0, to the degeneracy of Uk=0(Φ) for |Φ| < Φmin(0) = Φvac. The naive

Maxwell cut, applied for the concave part of the potential would give the degeneracy

for |Φ| < Φinfl only. The problem with this argument is that it produces an effective

potential which is convex everywhere except at |Φ| = Φinfl(0). The second derivative

of the potential is ill defined and the first derivative is discontinuous at this point. By

placing the system into a finite box the singularity is rounded off and the second derivative

becomes finite, but turns out to be negative in a vicinity of |Φ| = Φinfl(0). Convexity

regained only if the cut is extended between the minima, |Φ| < Φmin(0).

The generalized Maxwell construction in the mixed phase of a first order phase tran-

sition can be understood by the dynamics of the domain walls. The flatness of certain

thermodynamical potentials in the mixed phase reflects the presence of zero-modes, the

location of domain walls. Such a rather simple kinematical mechanism which is inde-

pendent of microscopic details is the source of the ‘super universality’, point 4 above.

The role of the domain walls is played by saddle points in our computation, the cosine

function in (162) realizes infinitely many equally spaced, parallel domain walls. The inte-

gration over the zero modes θk and ek according to the rules of the saddle point expansion

restores translational and rotational symmetries of the ground state and reproduces the

mixed phase.

One might object our independent treatment of the plane wave saddle points. The

RG equation (163) handles the plane waves in the consecutive momentum space shells

independently which seems as a vast oversimplification. But one should recall at this

point that according to the general strategy of the RG method the dynamics of the modes

eliminated during the blocking is retained by the modification of the effective coupling

constants. This is not always possible since there are more modes than coupling constants,

the problem mentioned at the end of section 2.1.1. More precisely, the general framework

of the blocking what is in principle always applicable is turned into a powerful scheme

when an approximation is made. One truncates the effective action and assumes that the

solution of this over-determined problem exists. This is the main, and so far unproven,

assumption of the RG method. Accepting this point we can determine the blocked

action by means of a homogeneous background field and use it for non-homogeneous field

configurations at the next blocking step as written in Eq. (163).

3.3.4 Correlation functions

One can compute the tree-level contributions to the correlation functions in a combination

of the mean-field and the saddle point approximation [80]. Let us split the complete
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functional integral into the sum of contributions which come from the unstable and

the stable regions. The fluctuations from the stable regions are governed by a non-

trivial action and they are taken into account as loop corrections. The fluctuations in

the unstable region experience a flat action and their contributions must be taken into

account on the tree-level. The complication of integrating up these contributions is the

determination of the region where the action is flat. Our approximation consists of

estimating this region for each plane wave independently, ie extending the integration

over the amplitude rp of the degenerate plane wave

φ̃cl(x) = rp cos(pepx+ θp) (164)

over the interval −ρp < r < ρp, where ρp is given by (162). Let us denote the integration

over the resulting domain by DΦ[r] and write the correlation function in momentum space

in this single-mode determined flat region as

GΦ
tree(p, q) =

1

4

[∫

D[θ]D[e]DΦ[r]
]−1 ∫

D[θ]D[e]DΦ[r]rprq

×
(

eiθpδp,kep + e−iθpδp,−kep

) (

eiθqδq,keq + e−iθqδq,−keq

)

. (165)

Due to the flatness of the action these integrals are purely kinematical and can easily

be carried out. All integration whose variable does not show up in the integrand drops

out. The integration over the shift of the plane waves, the phase angle θ, restores the

translation invariance,

GΦ
tree(p, q) = δp+q,0

[∫

de
∫

drp

]−1 ∫

de
∫

drpr
2
p

= δp+q,0
2(2π)dd

3Ωd

(Φmin(p) − Φ)2

Φ−1
min(Φ)

, (166)

where Φ−1
min(Φ) is defined as Φmin(Φ

−1
min(Φ)) = Φ. The Fourier transform of this propaga-

tor describes a diffraction type oscillation with characteristic length scale ξ = k−1
cr , the

characteristic feature of domains in a homogeneous state.

3.3.5 Condensation as crossover

The scaling laws of the scalar model change already approaching the condensation in the

stable region C of Fig. 7. Inside the instable region D the action with the potential given

by point 3 of section 3.3.3 becomes invariant under blocking, ie the whole region D is an

IR fixed point.

The vacuum of the scalar model is a single, homogeneous coherent state consisting

of zero momentum particles when |Φ| > Φvac. When |Φ| < Φvac we encounter the sin-

gularities as seen above. This singularity may not be real, it might be smoothened out

by higher order vertices and a saddle points appearing for k < kcr. But the vacuum is

the superposition of inhomogeneous coherent states with characteristic scales ℓ > 1/kcr.

Each of them breaks space-time symmetries but their sum remains symmetrical.
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One may wonder if any of the discussion applies to the true vacuum |Φ| = Φvac. For a

weakly coupled system the fluctuations are small and one may hope that the fluctuations

around Φvac are stable and un-influenced by what is happening with the unstable modes

φx < Φvac. But the answer to this question is rather uncertain and is open because the

true vacuum is just at the border of the instabilities and the typical fluctuations around

the true vacuum (φx − Φvac) ≈ g2(0)/g4(0) penetrate into the unstable region.

The issue of the modification of the scale dependence by a condensate [64] is rather

general and points far beyond the simple scalar model.

The vacuum of asymptotically free models supports strong correlations at long dis-

tance. In the case of 4 dimensional Yang-Mills models the naive, perturbative vacuum is

destabilized by the one-loop level effective action which predicts that the vacuum is made

up by a coherent state of gluons [82]. But this state cannot be the true vacuum. The

problem is not only that the field generated by the condensate is strong and spoils the

saddle point expansion but it turns out that there is an unstable mode. The true vacuum

is supposed to be found at even lower energy densities where the long range fluctuations

restore the the external and color symmetry broken by a homogeneous condensate of the

charged spin one gluons [83] and the vacuum is thought to contain domains of homoge-

neous field in a stochastic manner [84]. This scenario is close to the view of the mixed

phase of the scalar model developed here with the difference that the instability comes

from the loop or the tree-level renormalized action in the Yang-Mills or scalar model,

respectively. Furthermore the instability in the Yang-Mills model can be avoided by ex-

treme environment only, by immersing the system into strong external field or bringing

into contact with heat or particle reservoir.

Similar instability occurs in vacua containing condensate of bound states. The BCS

vacuum is made homogeneous in a non-trivial manner when represented in terms of

the electrons making up the Cooper pairs. The spontaneous breakdown of the chiral

invariance in QCD manifests itself in the condensate of quark-anti quark pairs which is

homogeneous after integrating out the instanton zero modes only [85]. The crossover

from the U.V. scaling regime to the instability takes place at k ≈ 1/ℓ where ℓ is the size

of the bound states. Higher order derivative terms appearing as effective vertices may

generate similar crossover, as well [72], [86].

Finally it is worthwhile mentioning the tunneling phenomena, the dynamical extension

of the instabilities considered above. The interesting feature of the dynamical realization

of the tunneling by means of time-dependent, tree-level instabilities is that they take

place in conservative systems but the long time distribution agrees with the equilibrium

predictions coming from the canonical ensemble [81].

3.4 Sine-Gordon model

It is not unusual that one arrives at periodic or variables in the construction of effec-

tive theories, cf non-linear sigma models or non-Abelian gauge theories. Such variables

represent a double challenge. One problem which can be considered as local in the in-
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ternal space is that the perturbation expansion around a minima of the potential should

keep infinitely many vertices in order to preserve the periodicity. Another, more difficult,

global problem is a conflict between the two requirements for the effective potential for

periodic variables, namely periodicity and convexity. One can fulfill both requirements

in a trivial manner only, by constant effective potential. If true, this conclusion has far

reaching consequence for the phenomenological description of such systems. As a case

study we shall consider the simplest model with periodic variable, the two dimensional

sine-Gordon model [87], [88].

3.4.1 Zoology of the sine-Gordon model

The sine-Gordon model

LSG =
1

2
(∂µφ)2 + u cosβφ (167)

has been shown to be equivalent with the X-Y model [89], [90], [87], the Thirring model

[91], [92] and a Coulomb gas [93]. The methods of Refs. [90], [91] and [92], approximate

duality transformation, bosonization and semiclassical approximation are valid in certain

regions of the coupling constant space. The maps used in Refs. [87] and [93] are exact.

The mapping [87] ψx = eβφx transforms the model (167) into the compactified sine-Gordon

model

LCSG =
1

2β2
∂µψ

∗∂µψ +
u

2
(ψ + ψ∗). (168)

The models (167) and (168) are equivalent in any order of the perturbation expansion in

continuous space-time where the configurations are assumed to be regular.

The X-Y model which is characterized by the action

SXY = − 1

T




∑

<x,x′>

cos(θx − θx′) + h
∑

x

cos(θx)



− ln z
∑

x

m2
x, (169)

where T = β2, h/T = u, z is the vortex fugacity and mx denotes the vortex density. The

RG equation of the X-Y model obtained in the dilute vortex gas limit [89], [90]

a
dT

da
= 4π3z2 − πT 2h2, a

dh

da
=
(

2 − T

4π

)

h, a
dz

dz
=
(

2 − π

T

)

z. (170)

The X-Y model appears as a generalization of the compactified sine-Gordon model

since the lattice regularization transforms the Lagrangian (168) into (169) with z = 1.

What is surprising here is that the vortex fugacity is a relevant operator in the high

temperature phase of the X-Y model but it is entirely missed by the lattice regularization!

Does that mean that the sine-Gordon model Lagrangians (167) and (168) are incomplete?

The vortex term could be missed by the regulator because the plane z = 0 is RG

invariant. Therefore it is consistent to exclude vortices from the path integral in the

sine-Gordon model given in continuous space-time. When we recast the model in lattice

regularization without ever thinking about vortices our lattice action neither suppresses,

nor enhances the singular configurations and sets z = 1. But once the vortices are not

suppressed, z 6= 0 the renormalized trajectories moves away from from the plane of fixed
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z. There is still no problem in the low temperature phase because all what happens is

that an irrelevant coupling constant became fixed. This is how regulators work. But the

problem is more serious in the high temperature phase. The Lagrangians (167) or (168)

can not give account of this phase because they lack a relevant, renormalizable coupling

constant. The perturbative continuum theory without vortices is consistent but once

vortices are available kinematically their density evolves in a non-trivial manner.

There is no problem with the lattice regulated X-Y model because the vortex fugacity

gets renormalized due to the cut-off dependence of the vortex action. In other words, we

can move along the RG flow by adjusting T and h only, the renormalization of z is carried

out ’automatically’ in the partition function. The renormalization of z is a problem in

the continuous formalism only where the vortices are introduced formally as point-like

charges.

This is an unexpected mechanism which brings the singular nature of the field con-

figurations into play during renormalization and may plague any quantum field theory.

The knowledge of the classical action in continuous space-time leaves open the possibility

that we have of adjust the fugacity of certain localized singularities or topological defects

not considered in the continuum.

It is interesting to speculate about similar phenomenon in QCD. Lattice QCD is con-

structed with ln z = 0 where z is the fugacity of some topological defects, like instantons,

monopoles, merons etc. These topological defects and singularities are supposed to play

an important role in the confining vacuum, as vortices do in the high temperature phase

of the X-Y model. The renormalization of the fugacities of these objects should first be

studied in lattice QCD in order to construct a continuum description of the vacuum.

The sine-Gordon model possesses a topological current, jµ,x = βǫµν∂νφx/2π which

is obviously conserved when the path integral is saturated by field configurations with

analytic space-time dependence. Its flux, the vorticity, gives the soliton number. The

world lines of the sine-Gordon solitons end at the X-Y model vortices, cf Fig. 11. The

distance between the bound vortex-anti vortex pairs shrinks with the lattice spacing in

the low temperature continuum limit. Any measurement with finite resolution loose sight

of the instability of solitons in the renormalized theory. The average distance between

vortices stays finite, cut-off independent in the continuum limit of the high temperature

phase and the soliton decay can be observed. One expects the breakdown or at least

important modification of the bosonization transformation in this phase. In fact, the non-

conservation of the topological current requires fermion number non-conserving terms in

the fermionic representation, a fundamental violation of the rules inferred from the weak

coupling expansion.

3.4.2 Effective potential

In order to understand better the dynamics of the long wavelength modes we compute the

effective potential in the sine-Gordon model. We follow the WH method truncated to the

local potential approximation which picks up the tree level evolution, too. It is obvious

that period length of the potential 2π/β remains RG invariant in this approximation.
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V

A

Fig. 11 The world line of a soliton starts at a vortex (V) and ends at an anti-vortex (A) in the
two dimensional space-time.

The tree ands the loop level RG equations are

Uk−∆k(φ) = min
ρ

[

k2

4
ρ2 +

∫ 1

−1
duUk(φ+ ρ cos(πu))

]

, (171)

and

kUk−∆k(φ) = kUk(φ) + ∆k
k2

4π
ln[k2 + U

(2)
k (φ)] (172)

in the plane z = 0.

We use the Fourier expanded form for the potential

Uk(φ) =
∞∑

n=0

un(k) cos (nβφ) (173)

and compute the leading order contribution to the WH equation when expanded in the

potential,

k∂kũn =

(

β2n2

4π
− 2

)

ũn, (174)

in terms of the the dimensionless coupling constants ũn = un/k
2. This agrees with the

second equation in (170). The solution of (174) is

ũn(k) = ũn(Λ)

(

k

Λ

)β2n2

4π
−2

. (175)

The coupling constants un are irrelevant in the disordered phase T = β2 > 8π and

the effective potential obtained for k = 0 is flat. The coupling constants n < 8π/T are

relevant in the ordered phase and the effective potential is non-trivial. At this pointe one

suspects that Maxwell construction interferes with the evolution because a non-trivial

periodic functions necessarily has concave regions. To settle this question one has to

rely on the numerical solution of the evolution equation (171). We followed the loops-

generated evolution (172) from the initial condition set at k = Λ until the stability is lost

at k = kcr for background field values which lie at local maxima of the periodic potential.

For k < kcr equation (171) was used. The result is that the coupling constants approach

zero as k → 0 due to the plane wave saddle points. The effective potential is trivial in

both phases.
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3.4.3 Breakdown of the fundamental group symmetry

The local potential Uk(φ) flattens without developing singularities in the high temperature

disordered phase. The transformation

φx → φx +
2π

β
(176)

is a discrete symmetry of the action and is preserved in the vacuum since the potential

barrier between the minima is vanishing for long range modes. Since we are at the lower

critical dimension, d = 2, the large amplitude long range modes realize the ’tunneling’

between the minima of the periodic potential. On the contrary to this situation, the

potential develops discontinuous second derivatives in the ordered, low temperature phase

and the instability driven flattening of the potential Uk(φ) reflects the survival of barriers

between the minima of the potential. All this looks like a spontaneous symmetry breaking,

therefore our conclusion is that the transformation (176) is not a symmetry of the vacuum

in the ordered, low temperature phase.

The usual circumstance under which such a phenomenon arises is the multiple con-

nectedness of the internal space. In the present context the non-linear U(1) σ-model

parametrization, Eq. (168), is based on the internal space U(1), with the fundamental

group Z generated by the transformation (176). The dynamical breakdown of the funda-

mental group symmetry is a genuine quantum effect. In fact, the path integral formally

extends over all homotopy classes, this is the symmetrical phase. When the dynamics de-

velops sufficiently high barriers between the homotopy classes the path integral becomes

restricted to a single homotopy class.

It is important to recall that the time evolution described by the Schrodinger equation

can be derived from the path integral by performing infinitesimal variations on the end

point of the trajectory. Therefore the consistency of the dynamics can be maintained

when the path integration is restricted into any functional subspace which is closed under

continuous deformation of the trajectories. The loss of the interference between homotopy

classes is the characteristic feature of the symmetry broken phase.

Such symmetry breaking is the key to understanding the way quarks become decon-

fined at high temperature or the droplet phase is formed for quantum liquids [94]. The

configuration space for global gauge transformations is SU(3)/Z3 for gluons, with the

fundamental group Z3. The quark propagator vanishes in the symmetrical phase due to

the destructive interference between the three homotopy classes. In the Z3 symmetry

broken deconfined phase there is no interference and quarks can be observed. Quantum

liquids in the first quantized formalism display similar symmetry breaking pattern. The

coordinate space for N particles is R3N/SN where SN consists of permutations of the

particles. The absence of the overlap among states belonging to different droplets sup-

presses the (anti)symmetrization of the states and reduces the exchange symmetry of the

ground state.

How can we recognize the dynamical breakdown of the fundamental group symmetry?

The simplest strategy, to look for the minima of the effective potential fails because
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Maxwell construction hides any structure in a periodic potential. The answer to this

question lies in the topological structure of excitations and the order parameter will be

a topological susceptibility.

This is rather natural since the phase transition is the restriction of the path integral

into a single homotopy class, the imposition of a topological constraint. Let us assume

that the analysis sketched above for the plane z = 0 remains qualitatively valid for

z 6= 0, ie the effective potential is always flat, due to the loop-generated evolution or the

Maxwell construction in the disordered or ordered phase, respectively. The topological

invariant characterizing the homotopy classes is the soliton number. In the weak coupling

expansion (ordered phase) the path integral is constrained into a single homotopy class

hence the soliton number is conserved, its susceptibility is vanishing in the continuum

limit. The stability of the soliton, based on the continuity of the time evolution is lost in

the disorder phase because the short distance, large amplitude fluctuations of the typical

field configuration extends the path integral all soliton number sector. Therefore the

susceptibility of the soliton number is non-vanishing in this phase.

3.4.4 Lower critical dimension

It is worthwhile noting the manner the Mermin-Wagner-Coleman theorem [95] appears

in the framework of the local potential approximation. By setting g2 = 0 for d = 2

the linear part of Pn in Eqs. (23) provides a finite evolution but the higher order terms

make the renormalized trajectory to diverge as k → 0 unless the coupling constants

approach zero. We can construct interactive, massless models in two dimensions so long

the running coupling constants approach zero sufficiently fast in the IR regime as in the

case of the sine-Gordon model, presented above. The retaining of the terms O (∂2) in

the gradient expansion provides another mechanism to suppress the IR divergences by

generating singular wave function renormalization constant, Zk as k → 0 [96].

In both cases the way to avoid the non-interactive system predicted by the Mermin-

Wagner-Coleman theorem is to use the RG improved perturbation expansion. In the

ordinary perturbation series we have the contributions like

gn
∫

p1,···,pk

fp1,···,pk
(177)

and the integral is IR divergent in d = 2. One has running coupling constants, g → gP ,

in the RG improved perturbation expansion where the analogous contribution is
∫

p1,···,pk

gnP (p1,···,pk)fp1,···,pk
. (178)

When the IR fixed point is Gaussian, limP→0 gP = 0, then the theory remains interactive

and the running coupling constants suppress the IR divergences.

3.5 Gauge models

The blocking step of the RG scheme, being scale dependent, violates local symmetries

which mix modes with different length scales.
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The most natural way to deal with this breakdown of gauge invariance is to cancel

the gauge non-invariant terms by fine tuning non-invariant counterterms [97]. But this

is possible in perturbation expansion only. Another, better suited strategy to the RG

method is to argue that the way Ward identities are violated by blocking shows that

the BRST invariance is broken by the running cut-off only and the BRST symmetry is

recovered at the IR fixed point when the cut-off is removed [20], [98]. This were certainly

a good procedure if it could be implemented without further truncation. In a weakly

coupled model such as QED one could construct approximations with controllable errors.

In asymptotically free models like QCD non-perturbative long range correlations make

any scheme which imposes gauge invariance in an approximate manner unreliable [63].

The demonstrate this point consider the static force law between two test charges in a

Yang-Mills theory in a scheme where the gauge invariance, Gauss’ law is implemented

approximately. The gauge non-invariant components of the vacuum state appear charged,

by definition. Thus we have an uncontrollable color charge distribution around the test

charges. When the distance between the test charges are large enough then it will be

energetically favorable for the uncontrollable charges to break the flux tube. We loose

the string tension in a manner similar how it happens in the true QCD vacuum due to

the virtual quark-anti quark polarizations. In more formal words, an arbitrarily weak

gauge-dependent perturbation can change the long range features of the vacuum as in

the ferromagnetic phase of the Ising model.

The most natural way to guarantee gauge invariance is to achieve independence on the

choice of gauge by using gauge invariant quantities only. The proposal of Ref. [99] goes

along this line but the use of loop variables renders the computation rather involved.

We discuss now a version of the RG scheme in the internal space which at least for

Abelian models produces the effective action without any gauge fixing. The electron

mass combined with chiral transformation has already been used in generating evolution

equation in Ref. [100]. We shall follow a simpler and more general by avoiding gauge

dependence in an explicit manner for the photon Green functions [101]. The gauge

invariant electron composite operators are not difficult to include [41].

3.5.1 Evolution equation

Let us consider the generator functional

e
1
h̄
W [j,j̄,J ] =

∫

D[ψ̄]D[ψ]D[A]e
1
h̄

∫

x
[− 1

4e2
FµνFµν−

α
2
(∂µAµ)2+ψ̄(iD/−m)ψ+j̄·ψ+ψ̄·j+Jµ·Aµ], (179)

where Dµ = ∂µ + iAµ and the dimensional regularization is used to render W finite. We

control the quantum fluctuations by modifying the action, S → S + Sλ with

Sλ =
λ

4e2

∫

x
Aµ,x2T

µνAν(x), (180)

where Tµν = gµν−∂µ∂ν/2. The infinitesimal change of the control parameter λ→ λ+∆λ

modifies the free photon propagator

Dµν(x− y) → Dµν(x− y) + ∆λ
∫

dzDµρ(x− z)2zTρκD
κν(z − y) + O

(

(∆λ)2
)

, (181)
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in a manner reminiscent of the Callan-Symanzik scheme.

The evolution equation (108) with the present suppression takes the form

∂λΓλ[A] =
h̄

2e2
tr



2T µν
(

δ2Γ̃[A]

δAµδAν

)−1


 (182)

in terms of the photon effective action Γ̃λ[A] = Γλ[A] + Sλ[A]. We project the evolution

equation on the functional space given by the ansatz

Γ̃[A] =
1

2

∫

x
Aµ,xD

−1(i∂)T µνAν,x + C[A] (183)

where

D−1µν = −1 + λ

e2
2T µν − α2Lµν , (184)

Lµν = δµν − T µν and C[A] is a gauge invariant functional.

The control parameter λ ’turns on’ the fluctuations of the photon field. Therefore the

electrons loop contributions to the effective action must already be present at the initial

condition which is chosen to be C[A] = −itr ln(iD/−m) at λ = λ0.

The second functional derivative matrix is written as

δ2Γ̃[A]

δAµδAν
= D−1µν +

δ2C[A]

δAµδAν
(185)

and the inversion is carried out by expanding in the non-diagonal pieces to write the

evolution equation as

∂λC[A] =
h̄

2e2
tr

[

2T µνD
∞∑

n=0

(−1)n
(

δ2C[A]

δAµδAν
D

)n]

. (186)

3.5.2 Gauge invariance

We show now that the limit α→ 0 can be taken in the evolution equation without hitting

any singularity. The gauge fixing parameter α enters through the photon propagator

D in the Neuman-expansion of the right hand side of Eq. (186). The α-dependent

longitudinal contributions of the first and the last D factor are suppressed by the gauge

invariance of the suppression term, represented by the transverse projection T µν in (186).

The longitudinal photon contributions of the internal propagators are suppressed by the

gauge invariance of the effective action,

∂µ
δC[A]

δAµ
= 0. (187)

According to this equation δ2C[A]/δAµδAν does not mix the longitudinal and the trans-

verse modes, ie non-longitudinal contributions appear in the evolution equation.

We choose a gauge in the argument above what was relaxed at the end of the compu-

tation. But the steps followed remain well defined even if we start with α = 0, without
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any gauge fixing. Our argument about the decoupling of the longitudinal and transverse

contributions to the evolution equation still applies but it is not clear if the longitudinal

part was well defined. This subtle issue is settled by Feynman’s ǫ parameter, devised to

lift infinitesimally the degeneracies of the action. It is easy to see that it gives a weak

variation of the action along gauge orbits by breaking gauge invariance. As long as our

truncation of the evolution equation, the functional C[A] is explicitly gauge invariant ǫ

plays the role of an infinitesimally external magnetic field in the Ising model, ie helps the

breakdown of the gauge symmetry only if it is really broken in the true vacuum.

4 What has been achieved

The traditional implementation of the RG idea has proven to be essential in Statistical and

High Energy Physics, starting with the understanding of critical phenomena [102], finite

size scaling [103], ǫ-expansion [104], dynamical processes with different time scales [105],

continuing with partial resummation of the perturbation expansion [4], parametrizing

the scale dependence at high energies [106] and ending with the construction of effective

theories in Particle Physics [107, 108, 109]. This is an inexcusable short and incomplete

list, its role is to demonstrate variability and the importance of the method only. Our

main concern here was the functional form of the RG method and its generalizations.

From this point of view one may distinguish conceptual and more technical achievements

as the power of the functional formalism is more exploited.

We should consider the RG method as ’meta-theory’, or in more practical terms

as a language, as Feynman graphs are used in particle physics. But this language is not

bound by small parameters and can provide us a general, non-perturbative approximation

method beyond the semiclassical expansion and numerical simulations.

The path integration was first viewed as a powerful book-keeping device for perturba-

tion expansion and the truly non-perturbative application came later, after having gained

some experience with the formalism. This is similar to the development of the functional

RG method where the RG equation refers to the generator function of the effective cou-

pling constants and provides us with a simple procedure to keep track of the Feynman

graphs. The steps in functional calculus are more cumbersome because they deal with

generator function(al)s, with infinitely many coupling constants. The ultimate goal is to

go beyond this level and to use this formalism in a genuinely non-perturbative manner.

The semiclassical expansion is our first step in this direction. It will be important to

check how the RG continues to be applicable where the saddle point expansion ceases to

be reliable.

Another field the RG scheme might be compared with is lattice regulated field theory.

Both are general purpose tools to deal with non-perturbative systems. The bottle-neck of

the numerical simulations on the lattice is the need to send the U.V. and the IR cut-offs

sufficiently far from each others and the restriction to Euclidean space-time. The RG

strategy is set up in continuous, Minkowski space time and there is no particular problem

with keeping the U.V. and IR cut-offs far from each other. But the drawback of the RG
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strategy is that it is rather lengthy to extend the space of (effective) action functionals

used in the computation. Since the limitations of the two methods are quite different

they might be used in a complementary manner.

The functional formalism is promising because of the possibility of following the mix-

ing of a much larger number of operators as in the traditional strategy. This feature gives

the hope of extending the applicability of the method from a single scaling regime to the

whole range of scales covered by the theory. Such an extension may provide us valuable

information about the competition of interactions in realistic theories.
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